Publications by authors named "G F van den Ackerveken"

Background: Breeding of lettuce (Lactuca sativa L.), the most important leafy vegetable worldwide, for enhanced disease resistance and resilience relies on multiple wild relatives to provide the necessary genetic diversity. In this study, we constructed a super-pangenome based on four Lactuca species (representing the primary, secondary and tertiary gene pools) and comprising 474 accessions.

View Article and Find Full Text PDF

Plant pathogens adapt at speeds that challenge contemporary disease management strategies like the deployment of disease resistance genes. The strong evolutionary pressure to adapt, shapes pathogens' genomes, and comparative genomics has been instrumental in characterizing this process. With the aim to capture genomic variation at high resolution and study the processes contributing to adaptation, we here leverage an innovative, multi-genome method to construct and annotate the first pangenome graph of an oomycete plant pathogen.

View Article and Find Full Text PDF

Microscopic imaging for studying plant-pathogen interactions is limited by its reliance on invasive histological techniques, like clearing and staining, or, for in vivo imaging, on complicated generation of transgenic pathogens. We present real-time 3D in vivo visualization of pathogen dynamics with label-free optical coherence tomography. Based on intrinsic signal fluctuations as tissue contrast we image filamentous pathogens and a nematode in vivo in 3D in plant tissue.

View Article and Find Full Text PDF

The hormone salicylic acid (SA) plays a crucial role in plant immunity by activating responses that arrest pathogen ingress. SA accumulation also penalizes growth, a phenomenon visible in mutants that hyperaccumulate SA, resulting in strong growth inhibition. An important question, therefore, is why healthy plants produce basal levels of this hormone when defense responses are not activated.

View Article and Find Full Text PDF

Hyaloperonospora arabidopsidis (Hpa) is an obligately biotrophic downy mildew that is routinely cultured on Arabidopsis thaliana hosts that harbour complex microbiomes. We hypothesized that the culturing procedure proliferates Hpa-associated microbiota (HAM) in addition to the pathogen and exploited this model system to investigate which microorganisms consistently associate with Hpa. Using amplicon sequencing, we found nine bacterial sequence variants that are shared between at least three out of four Hpa cultures in the Netherlands and Germany and comprise 34% of the phyllosphere community of the infected plants.

View Article and Find Full Text PDF