Publications by authors named "G F Filippone"

This paper highlights an affordable and straightforward method called chemical bath deposition (CBD) for generating different morphologies of ZnO-based nanostructures. In particular, a specific protocol was found to drive the growth versus a high-yield in-plane symmetric six-arm nanostructure, named a nanostar (NS). Each arm of the star consists of a cluster of parallel wires, creating a subnanostructure with a huge surface-to-volume ratio.

View Article and Find Full Text PDF

Biopolymers are of growing interest, but to improve some of their poor properties and performance, the formulation of bio-based blends and/or adding of nanoparticles is required. For this purpose, in this work, two different metal oxides, namely zinc oxide (ZnO) and titanium dioxide (TiO), at different concentrations (0.5, 1, and 2%wt.

View Article and Find Full Text PDF

This study describes, for the first time, the successful incorporation of poly(ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) in Poly(acrylonitrile) (PAN) fibers. While electroconductive PEDOT:PSS is extremely challenging to electrospun into fibers. Therefore, PAN, a polymer easy to electrospun, was chosen as a carrier due to its biocompatibility and tunable chemical stability when cross-linked, particularly using strong acids.

View Article and Find Full Text PDF

The goal of this work was to investigate the morphological and chemical-physical changes induced by adding ZnO nanoparticles to bio-based polymeric materials based on polylactic acid (PLA) and polyamide 11 (PA11). Precisely, the photo- and water-degradation phenomena of nanocomposite materials were monitored. For this purpose, the formulation and characterization of novel bio-nanocomposite blends based on PLA and PA11 at a ratio of 70/30 wt.

View Article and Find Full Text PDF

Due to a very low mixing entropy, most of the polymer pairs are immiscible. As a result, mixing polymers of different natures in a typical mechanical recycling process leads to materials with multiple interfaces and scarce interfacial adhesion and, consequently, with unacceptably low mechanical properties. Adding nanoparticles to multiphase polymeric matrices represents a viable route to mitigate this drawback of recycled plastics.

View Article and Find Full Text PDF