Background: Traumatic brain injury (TBI) is a disruption in normal brain function caused by an impact of external forces on the head. TBI affects millions of individuals per year, many potentially experiencing chronic symptoms and long-term disability, creating a public health crisis and an economic burden on society. The public discourse around sport-related TBIs has increased in recent decades; however, recognition of a possible TBI remains a challenge.
View Article and Find Full Text PDFImplementing tighter intensity modulated radiation therapy (IMRT) quality assurance (QA) tolerances initially resulted in high numbers of marginal or failing QA results and motivated a number of improvements to our calculational processes. This work details those improvements and their effect on results. One hundred eighty IMRT plans analyzed previously were collected and new gamma criteria were applied and compared to the original results.
View Article and Find Full Text PDFPurpose: The purpose of this study was to determine clinically relevant pass/question/fail criteria for gamma analysis of intensity-modulated radiation therapy quality assurance (IMRT QA) plans, identify which plans should be further analyzed with dose-volume histogram (DVH) metrics, and create a workflow for performing that DVH-based analysis.
Methods: A total of 11 plans, 5 prostate and 6 head/neck, were selected to represent known good plans based on their high-passing rate using conventional IMRT QA criteria. These were modified by moving the programmed MLC positions to underdose the target or overdose important structures by varying amounts.
Purpose: The Radiation Oncology Incident Learning System (RO-ILS) receives event reports from facilities across the country. This effort extracted common error pathways seen in the data. These pathways, expressed as fault trees, demonstrate the need for, and opportunities for, preventing these errors and/or limiting their propagation to treatment.
View Article and Find Full Text PDFPurpose: To present the most updated American College of Radiology (ACR) Appropriateness Criteria formed by an expert panel on the appropriate delivery of external beam radiation to manage stage T1 and T2 prostate cancer (in the definitive setting and post-prostatectomy) and to provide clinical variants with expert recommendations based on accompanying Appropriateness Criteria for target volumes and treatment planning.
Methods And Materials: The ACR Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a panel of multidisciplinary experts. The guideline development and revision process includes an extensive analysis of current medical literature from peer-reviewed journals and the application of well-established methodologies (RAND/UCLA Appropriateness Method and Grading of Recommendations Assessment, Development, and Evaluation) to rate the appropriateness of imaging and treatment procedures for specific clinical scenarios.