Publications by authors named "G Eggink"

Background: Cutaneotrichosporon oleaginosus ATCC 20509 is a fast-growing oleaginous basidiomycete yeast that is able to grow in a wide range of low-cost carbon sources including crude glycerol, a byproduct of biodiesel production. When glycerol is used as a carbon source, this yeast can accumulate more than 50% lipids (w/w) with high concentrations of mono-unsaturated fatty acids.

Results: To increase our understanding of this yeast and to provide a knowledge base for further industrial use, a FAIR re-annotated genome was used to build a genome-scale, constraint-based metabolic model containing 1553 reactions involving 1373 metabolites in 11 compartments.

View Article and Find Full Text PDF

Microbial cell factories are the workhorses of industrial biotechnology and improving their performances can significantly optimize industrial bioprocesses. Microbial strain engineering is often employed for increasing the competitiveness of bio-based product synthesis over more classical petroleum-based synthesis. Recently, efforts for strain optimization have been standardized within the iterative concept of "design-build-test-learn" (DBTL).

View Article and Find Full Text PDF

Background: Microbial cell factories are usually engineered and employed for cultivations that combine product synthesis with growth. Such a strategy inevitably invests part of the substrate pool towards the generation of biomass and cellular maintenance. Hence, engineering strains for the formation of a specific product under non-growth conditions would allow to reach higher product yields.

View Article and Find Full Text PDF

Advances in synthetic biology and metabolic engineering have proven the potential of introducing metabolic by-passes within cell factories. These pathways can provide a more efficient alternative to endogenous counterparts due to their insensitivity to host's regulatory mechanisms. In this work, we replaced the endogenous essential 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway for isoprenoid biosynthesis in the industrially relevant bacterium Rhodobacter sphaeroides by an orthogonal metabolic route.

View Article and Find Full Text PDF

Metabolic engineering for increased isoprenoid production often benefits from the simultaneous expression of the two naturally available isoprenoid metabolic routes, namely the 2-methyl-D-erythritol 4-phosphate (MEP) pathway and the mevalonate (MVA) pathway. Quantification of the contribution of these pathways to the overall isoprenoid production can help to obtain a better understanding of the metabolism within a microbial cell factory. Such type of investigation can benefit from C metabolic flux ratio studies.

View Article and Find Full Text PDF