Publications by authors named "G Eelen"

Background & Aims: Cystic fibrosis (CF) is considered a multisystemic disorder in which CF-associated liver disease (CFLD) is the third most common cause of mortality. Currently, no effective treatment is available for CFLD because its pathophysiology is still unclear. Interestingly, CFLD exhibits identical vascular characteristics as non-cirrhotic portal hypertension, recently classified as porto-sinusoidal vascular disorders (PSVD).

View Article and Find Full Text PDF

Endothelial cells (ECs) are highly glycolytic, but whether they generate glycolytic intermediates via gluconeogenesis (GNG) in glucose-deprived conditions remains unknown. Here, we report that glucose-deprived ECs upregulate the GNG enzyme PCK2 and rely on a PCK2-dependent truncated GNG, whereby lactate and glutamine are used for the synthesis of lower glycolytic intermediates that enter the serine and glycerophospholipid biosynthesis pathways, which can play key roles in redox homeostasis and phospholipid synthesis, respectively. Unexpectedly, however, even in normal glucose conditions, and independent of its enzymatic activity, PCK2 silencing perturbs proteostasis, beyond its traditional GNG role.

View Article and Find Full Text PDF

Angiogenesis and lymphangiogenesis, the formation of new blood or lymphatic vessels, respectively, from preexisting vasculature is essential during embryonic development, but also occurs during tissue repair and in pathological conditions (cancer; ocular disease; ischemic, infectious and inflammatory disorders), which are all characterized to a certain extent by inflammatory conditions. Hence, a rapid, inexpensive, feasible / technically easy, reliable assay of inflammation-induced (lymph-)angiogenesis is highly valuable. In this context, the corneal thermal cauterization assay in mice is a simple, low-cost, reproducible, insightful and labor-saving assay to gauge the role of inflammation in angiogenesis and lymphangiogenesis.

View Article and Find Full Text PDF

Intracellular Ca signals control several physiological and pathophysiological processes. The main tool to chelate intracellular Ca is intracellular BAPTA (BAPTA), usually introduced into cells as a membrane-permeant acetoxymethyl ester (BAPTA-AM). Previously, we demonstrated that BAPTA enhanced apoptosis induced by venetoclax, a BCL-2 antagonist, in diffuse large B-cell lymphoma (DLBCL).

View Article and Find Full Text PDF

Although VEGF-B was discovered as a VEGF-A homolog a long time ago, the angiogenic effect of VEGF-B remains poorly understood with limited and diverse findings from different groups. Notwithstanding, drugs that inhibit VEGF-B together with other VEGF family members are being used to treat patients with various neovascular diseases. It is therefore critical to have a better understanding of the angiogenic effect of VEGF-B and the underlying mechanisms.

View Article and Find Full Text PDF