Publications by authors named "G EGIDIO"

This study characterizes the mechanical performance of the AlSi10Mg alloy produced by powder bed fusion-laser beam (PBF-LB) subjected to two combined cycles consisting of multilayer coating deposition (electroless nickel (Ni-P) + diamond-like carbon (DLC)) and heat treatment. In particular, the DLC deposition phase replaces the artificial aging step in the T5 and T6 heat treatments, obtaining the following post-production cycles: (i) Ni-P + DLC deposition and (ii) rapid solution (SHTR) (10 min at 510 °C) before Ni-P + DLC deposition. Microstructural characterization shows no appreciable modifications in the morphology and dimensions of the hard Si-rich phase of the eutectic network and secondary spheroidal Si phase.

View Article and Find Full Text PDF

Study Objective: The inherent pressures of high-acuity, critical illness in the emergency department create a unique environment whereby acute goals-of-care discussions must be had with patients or substitute decision makers to rapidly decide between divergent treatment paths. Among university-affiliated hospitals, resident physicians are often conducting these highly consequential discussions. This study aimed to use qualitative methods to explore how emergency medicine residents make recommendations regarding life-sustaining treatments during acute goals-of-care discussions in critical illness.

View Article and Find Full Text PDF

Additive processes like Laser Beam Powder Bed Fusion (PBF-LB) result in a distinctive microstructure characterized by metastability, supersaturation, and finesse. Post-process heat treatments modify microstructural features and tune mechanical behavior. However, the exposition at high temperatures can induce changes in the microstructure.

View Article and Find Full Text PDF

Few systematic studies on the correlation between alloy microstructure and mechanical failure of the AlSi10Mg alloy produced by laser-based powder bed fusion (L-PBF) are available in the literature. This work investigates the fracture mechanisms of the L-PBF AlSi10Mg alloy in as-built (AB) condition and after three different heat treatments (T5 (4 h at 160 °C), standard T6 (T6B) (1 h at 540 °C followed by 4 h at 160 °C), and rapid T6 (T6R) (10 min at 510 °C followed by 6 h at 160 °C)). In-situ tensile tests were conducted with scanning electron microscopy combined with electron backscattering diffraction.

View Article and Find Full Text PDF

Background: Cardiogenic shock (CS) is associated with significant morbidity and mortality. The impact of beta-blocker (BB) use on patients who develop CS remains unknown. We sought to evaluate the clinical outcomes and hemodynamic response profiles in patients treated with BB in the 24 h prior to the development of CS.

View Article and Find Full Text PDF