The utilization of exogenous fiber-degrading enzymes in commercial swine diets is a strategy to increase the nutrient and energy density of poorly digestible ingredients. In a prior set of studies, dietary multienzyme blend (MEblend) supplementation increased the apparent total tract digestibility (ATTD) of nutrients, non-starch polysaccharides, and energy in complete high-fibrous gestation diets by 6% when fed to gestating sows. The current study aimed to determine the effects of MEblend (containing xylanase, β-glucanase, cellulase, amylase, protease, pectinase, and invertase activities) supplementation on ATTD of energy and nutrients of individual feedstuffs commonly used in gestating sow diets across major pork-producing regions worldwide, which differ in their fibrous components.
View Article and Find Full Text PDFWe report results in the development and testing of a low resource tophat electrostatic analyzer (ESA) for space plasma measurements. This device has been additively manufactured (3D-printed) using fused deposition modeling. The classic tophat design is composed of four plastic pieces, without any surface coatings.
View Article and Find Full Text PDFThe objective was to investigate the effect of a multienzyme blend (MEblend) and inclusion level on apparent total tract digestibility (ATTD) of energy and nutrients, as well as ileal digestibility of crude protein (CP) and amino acids (AA) in gestation diets with low (LF) or high-dietary fiber (HF) fed to gestation sows. For comparison, growing pigs were fed the same HF diets to directly compare ATTD values with the gestating sows. In experiment 1, 45 gestating sows (parity 0 to 5; 187 ± 28 kg bodyweight; BW) were blocked by parity in a 2 × 3 factorial arrangement and fed 2.
View Article and Find Full Text PDFBackground: Methylation of histone 3 lysine 36 (H3K36me) has emerged as an essential epigenetic component for the faithful regulation of gene expression. Despite its importance in development, disease, and cancer, how the molecular agents collectively shape the H3K36me landscape is unclear.
Results: We use a mouse mesenchymal stem cell model to perturb the H3K36me deposition machinery and infer the activities of the five most prominent players: SETD2, NSD1, NSD2, NSD3, and ASH1L.