Publications by authors named "G E Orlandini"

Understanding and controlling the electronic properties of two-dimensional materials are crucial for their potential applications in nano- and optoelectronics. Monolayer transition metal dichalcogenides have garnered significant interest due to their strong light-matter interaction and extreme sensitivity of the band structure to the presence of photogenerated electron-hole pairs. In this study, we investigate the transient electronic structure of monolayer WS on a graphene substrate after resonant excitation of the A-exciton using time- and angle-resolved photoemission spectroscopy.

View Article and Find Full Text PDF

Chronic wounds (CWs) are a growing issue for the health care system. Their treatment requires a synergic approach to reduce both inflammation and the bacterial burden. In this work, a promising system for treating CWs was developed, comprising cobalt-lignin nanoparticles (NPs) embedded in a supramolecular (SM) hydrogel.

View Article and Find Full Text PDF

We perform a systematic study of the α-particle excitation from its ground state 0_{1}^{+} to the 0_{2}^{+} resonance. The so-called monopole transition form factor is investigated via an electron scattering experiment in a broad Q^{2} range (from 0.5 to 5.

View Article and Find Full Text PDF

Hexagonal boron nitride (hBN), sometimes referred to as white graphene, receives growing interest in the scientific community, especially when combined into van der Waals (vdW) homo- and heterostacks, in which novel and interesting phenomena may arise. hBN is also commonly used in combination with two-dimensional (2D) semiconducting transition metal dichalcogenides (TMDCs). The realization of hBN-encapsulated TMDC homo- and heterostacks can indeed offer opportunities to investigate and compare TMDC excitonic properties in various stacking configurations.

View Article and Find Full Text PDF

In this work, the ability of several bis-viologen axles to thread a series of heteroditopic tris(N-phenylureido)calix[6]arene wheels to give interwoven supramolecular complexes to the [3]pseudorotaxane type was studied. The unidirectionality of the threading process inside these nonsymmetric wheels allows the formation of highly preorganised [3]pseudorotaxane and [3]rotaxane species in which the macrocycles phenylureido moieties, functionalised with either ester, carboxylic, or hydroxymethyl groups, are facing each other. As verified by NMR and semiempirical computational studies, these latter compounds possess the correct spatial arrangement of their subcomponents, which could lead, in principle, upon proper bridging reaction, to the realisation of upper-to-upper molecular capsules that are based on calix[6]arene derivatives.

View Article and Find Full Text PDF