Publications by authors named "G E Milanovsky"

The kinetics of the primary electron donor P and the quinone acceptor A redox transitions were simultaneously studied for the first time in the time range of 200 μs-10 ms using high-frequency pulse Q-band EPR spectroscopy at cryogenic temperatures in various complexes of photosystem I (PSI) from the cyanobacterium PCC 6803. In the A-core PSI complexes that lack 4Fe4S clusters, the kinetics of the A and P signals disappearance at 100 K were similar and had a characteristic time of τ ≈ 500 μs, caused by charge recombination in the PA ion-radical pair in the branch of redox cofactors. The kinetics of the backward electron transfer from A to P in the branch of redox cofactors with τ < 100 μs could not be resolved due to time limitations of the method.

View Article and Find Full Text PDF

The exciton interaction of four chlorophyll a (Chl a) molecules in a symmetrical tetrameric complex of the water-soluble chlorophyll-binding protein BoWSCP was analyzed in the pH range of 3-11. Exciton splitting ΔE = 232 ± 2 cm of the Q band of Chl a into two subcomponents with relative intensities of 78.1 ± 0.

View Article and Find Full Text PDF

In photosynthetic reaction centers of intact photosystem I (PSI) complexes from cyanobacteria, electron transfer at room temperature occurs along two symmetrical branches of redox cofactors A and B at a ratio of ~3 : 1 in favor of branch A. Previously, this has been indirectly demonstrated using pulsed absorption spectroscopy and more directly by measuring the decay modulation frequencies of electron spin echo signals (electron spin echo envelope modulation, ESEEM), which allows to determine the distance between the separated charges of the primary electron donor P and phylloquinone acceptors A and A in the symmetric redox cofactors branches A and B. In the present work, these distances were determined using ESEEM in PSI complexes lacking three 4Fe-4S clusters, F, F, and F, and the PsaC protein subunit (the so-called P-A core), in which phylloquinone molecules A and A serve as the terminal electron acceptors.

View Article and Find Full Text PDF

In this minireview, we consider the methods of measurements of the light-induced steady state transmembrane electric potential (Δψ) generation by photosynthetic systems, e.g. photosystem I (PS I).

View Article and Find Full Text PDF

In this work, we investigated the redox transients of a number of water-soluble spin labels upon their interactions with Photosystem II (PS II) core complexes isolated from spinach leaves. We have found that the reactivity of nitroxide radicals, determined by the rate of their reduction upon illumination of PS II, depends on the chemical structure of radicals and the capability of their coming close to low-potential redox centers of photoactive PS II complexes. An enhanced capability of nitroxide radicals to accept electrons from PS II correlates with their chemical structure.

View Article and Find Full Text PDF