Battery research often encounters the challenge of determining chemical information, such as composition and elemental oxidation states, of a layer buried within a cell stack in a non-destructive manner. Spectroscopic techniques based on X-ray emission or absorption are well-suited and commonly employed to reveal this information. However, the attenuation of X-rays as they travel through matter creates a challenge when trying to analyze layers buried at depths exceeding hundred micrometers from the sample's surface.
View Article and Find Full Text PDFWe have developed a microwave spectrometer for a measurement of the Lamb shift of antihydrogen atoms towards the determination of the antiproton charge radius. The spectrometer consists of two consecutive apparatuses, of which the first apparatus, (HFS), filters out hyperfine states and pre-selects the state, and the second apparatus, (MWS), sweeps the frequency around the target transition to obtain the spectrum. We optimized the geometry of the apparatuses by evaluating the S-parameter that represents the ratio of the reflected microwave signal over the input, utilizing microwave simulations based on the finite element method.
View Article and Find Full Text PDFHemophagocytic lymphohistiocytosis (HLH) is a severe cytokine storm syndrome (CSS), which until the turn of the century, was barely known but is now receiving increased attention. The history of HLH dates back to 1939 when it was first described in adults, to be followed in 1952 by the first description of its primary, familial form in children. Secondary forms of HLH are far more frequent and occur with infections, malignancies, metabolic diseases, iatrogenic immune suppression, and autoinflammatory/autoimmune diseases.
View Article and Find Full Text PDFBackground: Ferritin is an established biomarker in the diagnosis of secondary hemophagocytic lymphohistiocytosis (HLH), which is diagnosed by the HLH-2004 criteria. Among these criteria, detection of hemophagocytosis through invasive procedures may delay early life saving treatment. Our aim was to investigate the value of hemophagocytosis in diagnosing HLH in critically ill patients.
View Article and Find Full Text PDFThe usage of muonic x-rays to study elemental properties like nuclear radii ranges back to the seventies. This triggered the pioneering work at the Paul Scherrer Institute (PSI), during the eighties on the Muon-induced x-ray emission (MIXE) technique for a non-destructive assessment of elemental compositions. In recent years, this method has seen a rebirth, improvement, and adoption at most muon facilities around the world.
View Article and Find Full Text PDF