Biomacromolecules
January 2023
Intrinsically disordered peptide amphiphiles (IDPAs) present a novel class of synthetic conjugates that consist of short hydrophilic polypeptides anchored to hydrocarbon chains. These hybrid polymer-lipid block constructs spontaneously self-assemble into dispersed nanoscopic aggregates or ordered mesophases in aqueous solution due to hydrophobic interactions. Yet, the possible sequence variations and their influence on the self-assembly structures are vast and have hardly been explored.
View Article and Find Full Text PDFAntimicrob Agents Chemother
April 2022
Assigning names to β-lactamase variants has been inconsistent and has led to confusion in the published literature. The common availability of whole genome sequencing has resulted in an exponential growth in the number of new β-lactamase genes. In November 2021 an international group of β-lactamase experts met virtually to develop a consensus for the way naturally-occurring β-lactamase genes should be named.
View Article and Find Full Text PDFAmphiphilic molecules and their self-assembled structures have long been the target of extensive research due to their potential applications in fields ranging from materials design to biomedical and cosmetic applications. Increasing demands for functional complexity have been met with challenges in biochemical engineering, driving researchers to innovate in the design of new amphiphiles. An emerging class of molecules, namely, peptide amphiphiles, combines key advantages and circumvents some of the disadvantages of conventional phospholipids and block copolymers.
View Article and Find Full Text PDFA major risk factor for Gaucher's disease is loss of function mutations in the gene that encodes lysosomal β-glucocerebrosidase, resulting in accumulation of glucosylceramide (GlcCer), a key lysosomal sphingolipid. mutations also enhance the risk for Parkinson's disease, whose hallmark is the aggregation of α-synuclein (αSyn). However, the role of accumulated GlcCer in αSyn aggregation is not completely understood.
View Article and Find Full Text PDFThe Qnr pentapeptide repeat proteins interact with DNA gyrase and protect it from quinolone inhibition. The two external loops, particularly the larger loop B, of Qnr proteins are essential for quinolone protection of DNA gyrase. The specific QnrB1 interaction sites on DNA gyrase are not known.
View Article and Find Full Text PDF