Publications by authors named "G E Hinton"

Preparation requires technical research and development, as well as adaptive, proactive governance.

View Article and Find Full Text PDF

Background Context: A computed tomography (CT) and magnetic resonance imaging (MRI) are used routinely in the radiologic evaluation and surgical planning of patients with lumbar spine pathology, with the modalities being complimentary. We have developed a deep learning algorithm which can produce 3D lumbar spine CT images from MRI data alone. This has the potential to reduce radiation to the patient as well as burden on the health care system.

View Article and Find Full Text PDF

Machine-learning models for medical tasks can match or surpass the performance of clinical experts. However, in settings differing from those of the training dataset, the performance of a model can deteriorate substantially. Here we report a representation-learning strategy for machine-learning models applied to medical-imaging tasks that mitigates such 'out of distribution' performance problem and that improves model robustness and training efficiency.

View Article and Find Full Text PDF

This article does not describe a working system. Instead, it presents a single idea about representation that allows advances made by several different groups to be combined into an imaginary system called GLOM.1 The advances include transformers, neural fields, contrastive representation learning, distillation, and capsules.

View Article and Find Full Text PDF

This paper is part 2 of two papers that explore performing tomographic reconstructions from a space platform. A simplified model of short-wave infrared emissions in the atmosphere is given. Simulations were performed that tested the effectiveness of reconstructions given signal amplitude, frequency, signal-to-noise ratio, number of iterations run, and others.

View Article and Find Full Text PDF