Publications by authors named "G E Amidon"

Background: Phosphate buffer is often used as a replacement for the physiological bicarbonate buffer in pharmaceutical dissolution testing, although there are some discrepancies in their properties making it complicated to extrapolate dissolution results in phosphate to the in vivo situation. This study aims to characterize these discrepancies regarding solubility and dissolution behavior of ionizable compounds.

Methods: The dissolution of an ibuprofen powder with a known particle size distribution was simulated in silico and verified experimentally in vitro at two different doses and in two different buffers (5 mM pH 6.

View Article and Find Full Text PDF

The dissolution testing method described in the United States Pharmacopeia (USP) Chapter ⟨711⟩ is widely used for assessing the release of active pharmaceutical ingredients from solid dosage forms. However, extensive use over the years has revealed certain issues, including high experimental intervariability observed in specific formulations and the settling of particles in the dead zone of the vessel. To address these concerns and gain a comprehensive understanding of the hydrodynamic conditions within the USP 2 apparatus, computational fluid dynamic simulations have been employed in this study.

View Article and Find Full Text PDF

The authors present a steady-state-, particle-size-, and dose-dependent dissolution-permeation model that describes particle dissolution within the concentration boundary layer (CBL) adjacent to a semipermeable surface. It is critical to understand how particle size and dose affect the behavior of dissolving particles in the presence of a CBL adjacent to a semipermeable surface both and . Control of particle size is ubiquitous in the pharmaceutical industry; however, traditional pharmaceutical assumptions of particle dissolution typically ignore particle dissolution within the length scale of the CBL.

View Article and Find Full Text PDF

This review is a revisit of various oral drug absorption models developed in the past decades, focusing on how to incorporate the physiological dynamics in the upper gastrointestinal (GI) tract. For immediate-release oral drugs, GI absorption is a critical input of drug exposure and subsequent human body response, yet difficult to model largely due to the complex GI environment. One of the biggest hurdles lies at capturing the high within-subject variability (WSV) of bioavailability measures, which can be mechanistically explained by the GI physiological dynamics.

View Article and Find Full Text PDF