Intrapulse quantum cascade (QC) laser spectrometers are able to produce both saturation and molecular alignment of a gas sample owing to the rapid sweep of the radiation through the absorption features. In the QC lasers used to study the (14)N and (15)N isotopologues of the ν4 band of ammonia centered near 1625 cm(-1), the variation of the chirp rate during the scan is very large, from ca. 85 to ca.
View Article and Find Full Text PDFUsing a low power, rapid (nsec) pulse-modulated quantum cascade (QC) laser, collective coherent effects in the 5 μm spectrum of nitric oxide have been demonstrated by the observation of sub-Doppler hyperfine splitting and also Autler-Townes splitting of Doppler broadened lines. For nitrous oxide, experiments and model calculations have demonstrated that two main effects occur with pulse-modulated (chirped) quantum cascade lasers: free induction decay signals, and signals induced by rapid passage during the laser chirp. In the open shell molecule, NO, in which both Λ-doubling splitting and hyperfine structure occur, laser field-induced coupling between the hyperfine levels of the two Λ-doublet components can induce a large ac Stark effect.
View Article and Find Full Text PDFA large ac Stark effect has been observed when nitric oxide, at low pressure in a long optical path (100 m) Herriot cell, is subjected to infrared radiation from a rapidly swept, continuous wave infrared quantum cascade laser. As the frequency sweep rate of the laser is increased, an emission signal induced by rapid passage occurs after the laser frequency has passed through the resonance of 1-0 R(11.5)(3/2 /)molecular absorption line.
View Article and Find Full Text PDFFree induction decay (FID), optical nutation, and rapid passage induced signals in nitrous oxide, under both optically thin and optically thick conditions, have been observed using a rapid current pulse modulation, or chirp, applied to the slow current ramp of a quantum cascade (QC) laser. The variation in optical depth was achieved by increasing the pressure of nitrous oxide in a long path length multipass absorption cell. This allows the variation of optical depth to be achieved over a range of low gas pressures.
View Article and Find Full Text PDFIn this Letter, a 10 microm quantum cascade laser operating in the intrapulse mode is used observe rapid passage (RP) effects within a 40 cm single-pass gas cell containing low pressures of NH(3). The laser tuning range allows the rotational states J=2 with K=0, 1, and 2 to be probed. We show that the RP structures change as a function of optical density and that the magnitude of the delay in the switch from absorption to emission as a function of increased gas pressure is dependent upon the initial value of K.
View Article and Find Full Text PDF