DNA interfaces with nano, micro, and macro materials have gained widespread attention for various applications. Such interfaces exhibit distinct functions and properties not only due to the unique properties of interfacing materials but also sequence- and conformation-dependent characteristics of the DNA. Therefore, DNA interfaces with diverse dimensional materials have advanced our understanding of the interaction mechanisms and the properties of such interfaces.
View Article and Find Full Text PDFWe present a PNA microprobe sensing platform to detect trinucleotide repeat mutation by electrochemical impedance spectroscopy. The microprobe platform discriminated Huntington's disease-associated CAG repeats in cell-derived total RNA with S/N 1 : 3. This sensitive, label-free, and PCR-free detection strategy may be employed in the future to develop biosensing platforms for the detection of a plethora of repeat expansion disorders.
View Article and Find Full Text PDFOn the basis of theoretical models and calculations, several alternating polymeric structures have been investigated to develop optimized poly(2,7-carbazole) derivatives for solar cell applications. Selected low band gap alternating copolymers have been obtained via a Suzuki coupling reaction. A good correlation between DFT theoretical calculations performed on model compounds and the experimental HOMO, LUMO, and band gap energies of the corresponding polymers has been obtained.
View Article and Find Full Text PDFWe present a study of the optical and photophysical properties of five ladder indolo[3,2-b]carbazoles, namely, M1, M2, M3, M4, and M5. The ground-state optimized structures were obtained by B3LYP/6-31G* density functional theory (DFT) calculations, whereas the optimization (relaxation) of the first singlet excited electronic state (S1) was performed using the restricted configuration interaction (singles) (RCIS/6-31G*) approach. The excitation to the S1 state does not cause important changes in the geometrical parameters of the compounds, as corroborated by the small Stokes shifts.
View Article and Find Full Text PDFA combined theoretical and experimental study of the structure, optical, and photophysical properties of four 2,7-carbazolenevinylene-based derivatives in solution is presented. Geometry optimizations of the ground states of PCP, PCP-CN, TCT, and TCT-CN were carried out using the density functional theory (DFT/B3LYP/6-31G*). It is found that PCP and TCT are nearly planar in their ground electronic states (S0), whereas the cyano derivatives are more twisted.
View Article and Find Full Text PDF