J Environ Radioact
October 2022
A global-scale simulation of the Xe atmospheric background is automated at the French National Data Center (NDC) for the purpose of categorizing the radionuclide measurements of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) International Monitoring System (IMS). These simulations take into account Xe releases from all known major industrial emitters in the world, compiled from the literature and described as constant values. Emission data measured directly at the stack of the Institute for Radio Elements (IRE), a medical isotope production facility located in Fleurus (Belgium), were implemented in the simulations with a time resolution of 15 minutes.
View Article and Find Full Text PDFAtmospheric transport modeling has been used to interpret the unprecedented number of multi-isotope detections of radioxenons observed during the six months of the qualification process by the Comprehensive Nuclear-Test-Ban Treaty Organization of the new SPALAX-NG system (Système de Prélèvement Automatique en Ligne avec l'Analyse du Xénon - Nouvelle Génération). Highest Xe activity concentrations were found to be systematically associated with the concomitant measurement of several other radioxenons at the prevailing wind direction of north/northeast pointing to the Institute for Radio Elements (IRE), a medical isotope production facility located in Fleurus (Belgium). The lowest Xe activity concentrations were not associated with a prevailing wind direction or other radioxenons, indicating the contribution of distant sources (global background).
View Article and Find Full Text PDFThe SPALAX-NG is a new-generation system that is designed to detect radioactive xenon at trace levels in the atmosphere following a nuclear explosion or civilian source release. This new system formed part of a validation program led by the Provisional Technical Secretary of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) Organization. In this study, the first SPALAX-NG unit was tested for six months between October 2018 and April 2019 at the CEA/DIF premises near Paris, France.
View Article and Find Full Text PDFRadioactive xenon (mainly Xe, Xe, Xe and Xe) are tracked as markers of nuclear weapons testing. The CEA has developed the PIPSBox, a measurement cell able to detect electrons emitted by xenon nuclides. Combined with an ultra-low background γ spectrometer, electron detection capacities allow reaching minimum detectable activities (MDA) for a 3-day long measurement of about 0.
View Article and Find Full Text PDF