Carbon Balance Manag
August 2024
Background: Wood carbon fractions (CFs)-the proportion of dry woody biomass comprised of elemental carbon (C)-are a key component of forest C estimation protocols and studies. Traditionally, a wood CF of 50% has been assumed in forest C estimation protocols, but recent studies have specifically quantified differences in wood CFs across several different forest biomes and taxonomic divisions, negating the need for generic wood CF assumptions. The Intergovernmental Panel on Climate Change (IPCC), in its 2006 "Guidelines for National Greenhouse Gas Inventories", published its own multitiered system of protocols for estimating forest C stocks, which included wood CFs that (1) were based on the best available literature (at the time) and (2) represented a significant improvement over the generic 50% wood CF assumption.
View Article and Find Full Text PDFBackground: Forests are significant terrestrial biomes for carbon storage, and annual carbon accumulation of forest biomass contributes offsets affecting net greenhouse gases in the atmosphere. The immediate loss of stored carbon through fire on forest lands reduces the annual offsets provided by forests. As such, the United States reporting includes annual estimates of direct fire emissions in conjunction with the overall forest stock and change estimates as a part of national greenhouse gas inventories within the United Nations Framework Convention on Climate Change.
View Article and Find Full Text PDFBackground: In most regions and ecosystems, soils are the largest terrestrial carbon pool. Their potential vulnerability to climate and land use change, management, and other drivers, along with soils' ability to mitigate climate change through carbon sequestration, makes them important to carbon balance and management. To date, most studies of soil carbon management have been based at either large or site-specific scales, resulting in either broad generalizations or narrow conclusions, respectively.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2024
Forests are integral to the global land carbon sink, which has sequestered ~30% of anthropogenic carbon emissions over recent decades. The persistence of this sink depends on the balance of positive drivers that increase ecosystem carbon storage-e.g.
View Article and Find Full Text PDFThe forest carbon sink of the United States offsets emissions in other sectors. Recently passed US laws include important climate legislation for wildfire reduction, forest restoration, and forest planting. In this study, we examine how wildfire reduction strategies and planting might alter the forest carbon sink.
View Article and Find Full Text PDF