Publications by authors named "G Diallinas"

Most transmembrane membrane proteins are thought to traffic to the plasma membrane (PM) via the conventional secretory pathway through sorting from the Golgi. However, our recent work has shown that in the filamentous fungus Aspergillus nidulans several nutrient transporters and other major membrane proteins traffic to the PM via Golgi-bypass and independently of known post-Golgi secretory mechanisms. Here in an effort to dissect the molecular mechanism underlying membrane cargo trafficking via Golgi-bypass we design and use unbiased genetic screens, based on the UapA uric acid-xanthine transporter, which allowed the isolation of mutants defective in UapA translocation to the plasma membrane.

View Article and Find Full Text PDF

Membrane proteins are sorted to the plasma membrane via Golgi-dependent trafficking. However, our recent studies challenged the essentiality of Golgi in the biogenesis of specific transporters. Here, we investigate the trafficking mechanisms of membrane proteins by following the localization of the polarized R-SNARE SynA versus the non-polarized transporter UapA, synchronously co-expressed in wild-type or isogenic genetic backgrounds repressible for conventional cargo secretion.

View Article and Find Full Text PDF
Article Synopsis
  • Humans and some primates cannot produce Vitamin C and rely on dietary sources, utilizing specific transporters, SVCT1 and SVCT2, to absorb it effectively.
  • Recent studies have revealed that SVCT1 operates as a dimer and uses an elevator-like mechanism to transport ascorbic acid into tissues, with its structure providing insights into how it binds substrates.
  • Investigations into human SVCT1 variants emphasize the significance of the dimer for transport function and proper localization within the cell membrane, highlighting the critical role of its C-terminus.
View Article and Find Full Text PDF

UapA is an extensively studied elevator-type purine transporter from the model fungus . Determination of a 3.6Å inward-facing crystal structure lacking the cytoplasmic N-and C-tails, molecular dynamics (MD), and functional studies have led to speculative models of its transport mechanism and determination of substrate specificity.

View Article and Find Full Text PDF

FurE is a H symporter specific for the cellular uptake of uric acid, allantoin, uracil, and toxic nucleobase analogues in the fungus nidulans. Being member of the NCS1 protein family, FurE is structurally related to the APC-superfamily of transporters. APC-type transporters are characterised by a 5+5 inverted repeat fold made of ten transmembrane segments (TMS1-10) and function through the rocking-bundle mechanism.

View Article and Find Full Text PDF