Publications by authors named "G Di Pino"

Heat acclimation is an adaptive process that improves physiological performance and supports survival in the face of increasing environmental temperatures, but the underlying mechanisms are not well understood. Here we identified a discrete group of neurons in the mouse hypothalamic preoptic area (POA) that rheostatically increase their activity over the course of heat acclimation, a property required for mice to become heat tolerant. In non-acclimated mice, peripheral thermoafferent pathways via the parabrachial nucleus activate POA neurons and mediate acute heat-defense mechanisms.

View Article and Find Full Text PDF

Sandwich panels are widely used in the naval and aerospace industries to withstand the normal tensile, compressive, and shear stresses associated with bending. The faces of sandwich composites are usually made of metals such as aluminum and, in some studies with composites, using a polymeric matrix, but there are no studies in the literature using a castor oil polyurethane matrix. The core of the panel must keep the faces apart and be rigid perpendicular to them.

View Article and Find Full Text PDF

Magnetoencephalography and electroencephalography (M/EEG) seed-based connectivity analysis requires the extraction of measures from regions of interest (ROI). M/EEG ROI-derived source activity can be treated in different ways. It is possible, for instance, to average each ROI's time series prior to calculating connectivity measures.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the effects of transcutaneous spinal direct current stimulation (tsDCS) on spinal cord excitability through a randomized, sham-controlled experiment involving 18 young participants.
  • It found that a specific electrode configuration (anode on the 7th cervical spinous process and cathode on the glottis) significantly enhanced motor responses in hand muscles when stimulated, particularly noticeable during tsDCS and plateauing after six minutes.
  • These results indicate that tsDCS may enhance motoneuron excitability, suggesting potential therapeutic applications for individuals with impaired hand motor function due to corticospinal fiber issues.
View Article and Find Full Text PDF
Article Synopsis
  • Scientists studied how our brain changes when we use artificial limbs, like prosthetics that feel like part of our body.
  • They used a trick called the Rubber Hand Illusion to see how our brain reacts when we think an artificial limb is really ours.
  • They found that different parts of the brain react at different times, showing that our brain has special ways to help us feel like the artificial limb belongs to us.
View Article and Find Full Text PDF