Publications by authors named "G Di Lauro"

Inhibiting microsomal prostaglandin E synthase-1 (mPGES-1), an inducible enzyme involved in prostaglandin E (PGE) biosynthesis and tumor microenvironment (TME) homeostasis, is a valuable strategy for treating inflammation and cancer. In this work, 5-methylcarboxamidepyrrole-based molecules were designed and synthesized as new compounds targeting mPGES-1. Remarkably, compounds 1f, 2b, 2c, and 2d were able to significantly reduce the activity of the isolated enzyme, showing IC values in the low micromolar range.

View Article and Find Full Text PDF

The antiapoptotic BAG3 protein plays a crucial role in cellular proteostasis and it is involved in several signalling pathways governing cell proliferation and survival. Owing to its multimodular structure, it possesses an extensive interactome including the molecular chaperone HSP70 and other specific cellular partners, which make it an eminent factor in several pathologies, particularly in cancer. Despite its potential as a therapeutic target, very few BAG3 modulators have been disclosed so far.

View Article and Find Full Text PDF

The common bean ( L.) is one of the oldest food crops in the world. In this study, the ultra-high-performance liquid chromatography high-resolution mass spectrometry (UHPLC-MS/MS) technique was used to characterize the polar lipid composition and polyphenolic fraction of five bean varieties commonly consumed in Italy: Cannellino (PVCA), Controne (PVCO), Borlotti (PVBO), Stregoni (PVST), and Vellutina (PVVE).

View Article and Find Full Text PDF

Airway management and safety remain a difficult challenge during reconstructive surgery in patients with extensive post-burn mentosternal scar contractures. Current guidelines do not recommend the use of direct laryngoscopy for predicted difficult airway because of the risk of intubation failure and airway emergencies: the consequences of wrong decisions can be fatal, and the patient is at serious risk. At present, video-laryngoscopy is the most commonly used technique for routine orotracheal intubation.

View Article and Find Full Text PDF

A 3D structure-based pharmacophore model built for bromodomain-containing protein 4 (BRD4) is reported here, specifically developed for investigating and identifying the key structural features of the (+)-JQ1 known inhibitor within the BRD4 binding site. Using this pharmacophore model, 273 synthesized and purchased compounds previously considered for other targets but yielding poor results were screened in a drug repositioning campaign. Subsequently, only six compounds showed potential as BRD4 binders and were subjected to further biophysical and biochemical assays.

View Article and Find Full Text PDF