Publications by authors named "G Della Vedova"

Pangenomes are becoming a powerful framework to perform many bioinformatics analyses taking into account the genetic variability of a population, thus reducing the bias introduced by a single reference genome. With the wider diffusion of pangenomes, integrating genetic variability with transcriptome diversity is becoming a natural extension that demands specific methods for its exploration. In this work, we extend the notion of spliced pangenomes to that of annotated spliced pangenomes; this allows us to introduce a formal definition of Alternative Splicing (AS) events on a graph structure.

View Article and Find Full Text PDF

Background: The construction of a pangenome graph is a fundamental task in pangenomics. A natural theoretical question is how to formalize the computational problem of building an optimal pangenome graph, making explicit the underlying optimization criterion and the set of feasible solutions. Current approaches build a pangenome graph with some heuristics, without assuming some explicit optimization criteria.

View Article and Find Full Text PDF

Motivation: Bacterial genomes present more variability than human genomes, which requires important adjustments in computational tools that are developed for human data. In particular, bacteria exhibit a mosaic structure due to homologous recombinations, but this fact is not sufficiently captured by standard read mappers that align against linear reference genomes. The recent introduction of pangenomics provides some insights in that context, as a pangenome graph can represent the variability within a species.

View Article and Find Full Text PDF

The literature has demonstrated the potential for detecting accurate electrical signals that correspond to the will or intention to move, as well as decoding the thoughts of individuals who imagine houses, faces or objects. This investigation examines the presence of precise neural markers of imagined motivational states through the combining of electrophysiological and neuroimaging methods. 20 participants were instructed to vividly imagine the desire to move, listen to music or engage in social activities.

View Article and Find Full Text PDF

Computational pangenomics is an emerging research field that is changing the way computer scientists are facing challenges in biological sequence analysis. In past decades, contributions from combinatorics, stringology, graph theory and data structures were essential in the development of a plethora of software tools for the analysis of the human genome. These tools allowed computational biologists to approach ambitious projects at population scale, such as the 1000 Genomes Project.

View Article and Find Full Text PDF