The emerging threat represented by SARS-CoV-2 variants, demands the development of therapies for better clinical management of COVID-19. MAD0004J08 is a potent Fc-engineered monoclonal antibody (mAb) able to neutralize in vitro all current SARS-CoV-2 variants of concern (VoCs) including the omicron variant even if with significantly reduced potency. Here we evaluated data obtained from the first 30 days of a phase 1 clinical study (EudraCT N.
View Article and Find Full Text PDFThe point at which clinical development programs transition from early phase to pivotal trials is a critical milestone. Substantial uncertainty about the outcome of pivotal trials may remain even after seeing positive early phase data, and companies may need to make difficult prioritization decisions for their portfolio. The probability of success (PoS) of a program, a single number expressed as a percentage reflecting the multitude of risks that may influence the final program outcome, is a key decision-making tool.
View Article and Find Full Text PDFA three-step approach to the early development of adjuvanted vaccine candidates is proposed, the goal of which is to allow ample space for exploratory and hypothesis-generating human experiments and to select dose(s) and dosing schedule(s) to bring into full development. Although the proposed approach is more extensive than the traditional early development program, the authors suggest that by addressing key questions upfront the overall time, size and cost of development will be reduced and the probability of public health advancement enhanced. The immunogenicity end-points chosen for early development should be critically selected: an established immunological parameter with a well characterized assay should be selected as primary end-point for dose and schedule finding; exploratory information-rich end-points should be limited in number and based on pre-defined hypothesis generating plans, including system biology and pathway analyses.
View Article and Find Full Text PDFMass immunization of children has the potential to decrease infection rates and prevent the transmission of influenza. We evaluated the immunogenicity, safety, and tolerability of different formulations of cell-derived MF59-adjuvanted and nonadjuvanted A/H1N1 influenza vaccine in children and adolescents. This was a randomized, single-blind, multicenter study with a total of 666 healthy subjects aged 6 months-17 y in one of 3 vaccination groups, each receiving formulations containing different amounts of influenza A/H1N1 antigen with or without MF59.
View Article and Find Full Text PDF