Basophils are, together with mast cells, typical innate effector cells of allergen-induced IgE-dependent allergic diseases. Both cell types express the high-affinity receptor for IgE (FcεR1), release histamine, inflammatory mediators, and cytokines following FcεR1 cross-linking. Basophils are rare granulocytes in blood, lymphoid, and non-lymphoid tissues, and the difficulties to detect and isolate these cells has hampered the study of their biology and the understanding of their possible role in pathology.
View Article and Find Full Text PDFBackground: Shortly after allergen exposure, the number of bone marrow (BM) and circulating CD34(+) progenitors increases. We aim to analyze the possible mechanism whereby the allergic reaction stimulates BM to release these effector cells in increased numbers. We hypothesize that mast cells (MCs) may play a predominant role in this process.
View Article and Find Full Text PDFBackground: Although the contribution of basophils as inducers or amplifiers of Th2 responses is still debated, prolonged basophil/CD4 T cell interactions were observed in lungs but not lymph nodes (LNs) of parasite-infected mice. However, the impact of basophils on the function of tissue CD4 effector T cells remains unknown.
Methods: Basophils were purified from the lungs of ovalbumin (OVA)-sensitized and OVA-challenged (OVA-immunized) mice or human peripheral blood for in vivo and in vitro functional studies.
Basophils are a rare population of granulocytes that have long been associated with IgE-mediated and Th2-associated allergic diseases. However, the role of basophils in Th17 and/or Th1 diseases has not been reported. In the present study, we report that basophils can be detected in the mucosa of Th17-associated lung and inflammatory bowel disease and accumulate in inflamed colons containing large quantities of IL-33.
View Article and Find Full Text PDF