Medical image processing has been highlighted as an area where deep-learning-based models have the greatest potential. However, in the medical field, in particular, problems of data availability and privacy are hampering research progress and, thus, rapid implementation in clinical routine. The generation of synthetic data not only ensures privacy but also allows the drawing of new patients with specific characteristics, enabling the development of data-driven models on a much larger scale.
View Article and Find Full Text PDFIntroduction: The exact mechanisms of bone remodelling after scaphoid fractures are not fully understood. Blood supply may lead to delayed consolidation and non-unions as challenging long-term problems. The aim of this study was to follow-up the microstructure during the scaphoid bone remodelling process using High Resolution peripheral Quantitative Computed Tomography (HR-pQCT) and compare the results with clinical and laboratory data.
View Article and Find Full Text PDFThe increasing numbers of total joint replacements and related implant-associated infections demand solutions, which can provide a high-dose local delivery of antibiotics. Antibiotic-loaded bone cement (ALBC) is an accepted treatment method for infected joint arthroplasties. The mechanical properties of low-dose gentamicin-loaded bone cement (BC) in medium- and high-viscosity versions were compared to unloaded BC using a vacuum mixing system.
View Article and Find Full Text PDFIn vivo high-resolution peripheral quantitative computed tomography (HR-pQCT) studies on bone characteristics are limited, partly due to the lack of standardized and objective techniques to describe motion artifacts responsible for lower-quality images. This study investigates the ability of such deep-learning techniques to assess image quality in HR-pQCT datasets of human scaphoids. In total, 1451 stacks of 482 scaphoid images from 53 patients, each with up to six follow-ups within one year, and each with one non-displaced fractured and one contralateral intact scaphoid, were independently graded by three observers using a visual grading scale for motion artifacts.
View Article and Find Full Text PDFUnlabelled: The study shows a high incidence of motion artefacts in a central European population and a significant increase of those artefacts with higher age. These findings may impact on the design and conduct of future in vivo HR-pQCT studies or at least help to estimate the potential number of drop outs due to unusable image quality.
Purpose: Motion artefacts in high-resolution peripheral quantitative computed tomography (HR-pQCT) are challenging, as they introduce error into the resulting measurement data.