Publications by authors named "G De Cesare"

The development and calibration of a measurement system designed for assessing the performance of the avalanche photodiodes (APDs) used in the Compton scattering polarimeter of the CUSP project is discussed in this work. The designed system is able to characterize the APD gain GAPD and energy resolution across a wide range of temperatures (from -20 °C to +60 °C) and bias voltages Vbias (from 260 V to 410 V). The primary goal was to experimentally determine the GAPD dependence on the and Vbias in order to establish a strategy for stabilizing GAPD by compensating for fluctuations, acting on Vbias.

View Article and Find Full Text PDF

Vitality Forms (VFs) constitute the dynamic essence of human actions, providing insights into how individuals engage in activities. The ability to perceive and express VFs during interpersonal interactions is pivotal for understanding others' intentions, behaviors, and fostering effective social communication. Despite their ubiquity in all actions, research exploring the role of VFs in neurodivergent conditions related to social and communicative skills, particularly in autism, remains limited.

View Article and Find Full Text PDF

This paper presents a comprehensive study of hydrogenated amorphous silicon (a-Si)-based detectors, utilizing electrical characterization, Raman spectroscopy, photoemission, and inverse photoemission techniques. The unique properties of a-Si have sparked interest in its application for radiation detection in both physics and medicine. Although amorphous silicon (a-Si) is inherently a highly defective material, hydrogenation significantly reduces defect density, enabling its use in radiation detector devices.

View Article and Find Full Text PDF

Detectors that can provide accurate dosimetry for microbeam radiation therapy (MRT) must possess intrinsic radiation hardness, a high dynamic range, and a micron-scale spatial resolution. In this work we characterize hydrogenated amorphous silicon detectors for MRT dosimetry, presenting a novel combination of flexible, ultra-thin and radiation-hard features.Two detectors are explored: an n-type/intrinsic/p-type planar diode (NIP) and an NIP with an additional charge selective layer (NIP + CSC).

View Article and Find Full Text PDF