Publications by authors named "G Davidkova"

The mGluR-dependent endocytosis of AMPA receptors (AMPARs) in the CA1 region is protein synthesis dependent. However, why this form of trafficking, and not that mediated by NMDA receptor activation, is dependent on protein translation is unclear. Here we have studied the contribution of the cytoskeletal microtubule-associated protein 1B (MAP1B) to the pathway-specific internalization of AMPARs.

View Article and Find Full Text PDF

Both the estrogen receptor (ER) and thyroid hormone receptor (TR) are members of the nuclear receptor superfamily. Two isoforms of the ER, alpha and beta, exist. The TRalpha and beta isoforms are products of two distinct genes that are further differentially spliced to give TRalpha1 and alpha2, TRbeta1 and beta2.

View Article and Find Full Text PDF

Agents that produce their effects through an antisense mechanism offer the possibility of developing highly specific alternatives to traditional pharmacological antagonists, thereby providing a novel class of therapeutic agents, ones which act at the level of gene expression. Among the antisense compounds, antisense RNA produced intracellularly by an expression vector has been used extensively in the past several years. This review considers the advantages of the antisense RNA approach over the use of antisense oligodeoxynucleotides, the different means by which one may deliver and produce antisense RNA inside cells, and the experimental criteria one should use to ascertain whether the antisense RNA is acting through a true antisense mechanism.

View Article and Find Full Text PDF

Calmodulin (CaM) is encoded by three different genes that collectively give rise to five transcripts. In the present study, we used antisense oligodeoxynucleotides targeted to unique sequences in the transcripts from the individual CaM genes to selectively block the expression of the different genes and to investigate the roles these individual genes play in the proliferation and nerve growth factor (NGF)-induced differentiation of PC12 cells. Culturing PC12 cells in the presence of oligodeoxynucleotide antisense to the transcripts from CaM genes I and II caused a significant decrease in the proliferation and a significant delay in the NGF-induced differentiation of PC12 cells when compared with untreated cells and with cells treated with the corresponding randomized oligodeoxynucleotides.

View Article and Find Full Text PDF