Background: The intracytoplasmic sperm injection (ICSI) technique has low efficiency in cattle. This has mainly been attributed to the oocyte activation failure due to oocyte and/or sperm factors.
Aim: Our aim was to evaluate the effect of conventional ICSI and Piezo-ICSI with bull or human sperm on bovine oocyte activation and embryo development and to assess its relationship with the phospholipase C zeta (PLCɀ) activity of both species.
Background: As the porcine oocyte is the most sensitive to low-temperature damage, it has been difficult to cryopreserve compared to those from other domestic animals. However, at present, vitrification is used as a method for the cryopreservation of both oocytes and embryos in this species.
Aim: Our aim was to analyze alterations in metabolic parameters in vitrified-warmed matured porcine oocytes at different post-warming recuperation times.
Effects of meiotic stage and cumulus status on development of equine oocytes after vitrification was evaluated. Immature oocytes with corona radiata (IMM); in vitro-matured oocytes with corona radiata (MAT CR+); and in vitro-matured oocytes denuded of cumulus (MAT CR-) were vitrified using the Cryotech® method. Warming medium was equilibrated either in 5% CO or Air.
View Article and Find Full Text PDFThe aim of the present study was to evaluate the effect of vitrification on morphological, biochemical and functional parameters of matured bovine oocytes at different recovery times. To this end, matured bovine oocytes were vitrified using the Cryotech® kit (a minimum-volume system) and then incubated in maturation medium for different post-warming durations (0 h, 3 h or 21 h). Morphology, viability and biochemical parameters were assessed at each time point mentioned above and the recovery of the metaphase plate was analyzed at 2 h, 3 h and 4 h post-warming.
View Article and Find Full Text PDFGlycolysis and the pentose phosphate pathway (PPP) were modulated in porcine cumulus-oocyte complexes during IVM by the addition of inhibitors and stimulators of key enzymes of the pathways to analyze their influence on the oxidative status, active mitochondria, and maturation of the oocyte. The influence of pharmacologic and physiological inhibitors of glycolysis (Sodium fluoride and ATP) and PPP (6-Aminonicotinamide and nicotinamide adenine dinucleotide phosphate) was validated by assessing glucose and lactate turnover and brilliant cresyl blue staining in oocytes. Inhibitors of glycolysis and PPP activity significantly perturbed nuclear maturation, oxidative metabolism (Redox Sensor Red CC-1), and active mitochondria (Mitotracker Green FM) within oocytes (P < 0.
View Article and Find Full Text PDF