Publications by authors named "G Dahan"

Proximal humerus impacted fractures are of clinical concern in the elderly population. Prediction of such fractures by CT-based finite element methods encounters several major obstacles such as heterogeneous mechanical properties and fracture due to compressive strains. We herein propose to investigate a variation of the phase field method (PFM) embedded into the finite cell method (FCM) to simulate impacted humeral fractures in fresh frozen human humeri.

View Article and Find Full Text PDF

Background: Proximal humeri fractures at anatomical and surgical neck (∼5% and ∼50% incidence respectively) are frequent in elderly population. Yet, neither in-vitro experiments nor CT-based finite element analyses (CTFEA) have investigated these in depth. Herein we enhance (Dahan et al.

View Article and Find Full Text PDF

Background: Proximal humerus fractures which occur as a result of a fall on an outstretched arm are frequent among the elderly population. The necessity of stabilizing such fractures by surgical procedures is a controversial matter among surgeons. Validating a personalized FE analysis by ex-vivo experiments of humeri and mimicking such fractures by experiments is the first step along the path to determine the necessity of such surgeries.

View Article and Find Full Text PDF

A proximal humerus fracture is an injury to the shoulder joint that necessitates medical attention. While it is one of the most common fracture injuries impacting the elder community and those who suffer from traumatic falls or forceful collisions, there are almost no validated computational methods that can accurately model these fractures. This could be due to the complex, inhomogeneous bone microstructure, complex geometries, and the limitations of current fracture mechanics methods.

View Article and Find Full Text PDF

Patient-specific QCT-based finite element (QCTFE) analyses enable highly accurate quantification of bone strength. We evaluated CT scanner influence on QCTFE models of long bones. A femur, humerus, and proximal femur without the head were scanned with KHPO phantoms by seven CT scanners (four models) using typical clinical protocols.

View Article and Find Full Text PDF