Publications by authors named "G D Tollefson"

Background: Globally, preterm birth remains the leading cause of death in children younger than 5 years old. Spontaneous preterm birth is comprised of two events that may or may not occur simultaneously: preterm labor and preterm prelabor rupture of membranes (PPROM). To further explore the concept that spontaneous preterm birth can result from the initializing of two separate but overlapping pathological events, we compared fetal membrane tissue from preterm labor deliveries to fetal tissue from preterm labor with PPROM deliveries.

View Article and Find Full Text PDF

Heme oxygenase-1 (HO-1) is a rate-limiting enzyme in degrading heme into biliverdin and iron. HO-1 can also enter the nucleus and regulate gene transcription independent of its enzymatic activity. Whether HO-1 can alter gene expression through direct binding to target DNA remains unclear.

View Article and Find Full Text PDF

Preeclampsia is a hypertensive disorder of pregnancy, which complicates up to 15% of US deliveries. It is an idiopathic disorder associated with several different phenotypes. We sought to determine if the genetic architecture of preeclampsia can be described by clusters of patients with variants in genes in shared protein interaction networks.

View Article and Find Full Text PDF

The likely genetic architecture of complex diseases is that subgroups of patients share variants in genes in specific networks sufficient to express a shared phenotype. We combined high throughput sequencing with advanced bioinformatic approaches to identify such subgroups of patients with variants in shared networks. We performed targeted sequencing of patients with 2 or 3 generations of preterm birth on genes, gene sets and haplotype blocks that were highly associated with preterm birth.

View Article and Find Full Text PDF

Severe oligohydramnios (OH) due to prolonged loss of amniotic fluid can cause pulmonary hypoplasia. Animal model of pulmonary hypoplasia induced by amniotic fluid drainage is partly attributed to changes in mechanical compression of the lung. Although numerous studies on OH-model have demonstrated changes in several individual proteins, however, the underlying mechanisms for interrupting normal lung development in response to a decrease of amniotic fluid volume are not fully understood.

View Article and Find Full Text PDF