Mitochondrial damage and associated oxidative stress are considered to be major contributory factors in cardiac pathology. One of the most potent naturally occurring antioxidants is taxifolin, especially in its water-soluble form. Herein, the effect of a 14-day course of the peroral application of the water-soluble taxifolin (aqTAX, 15 mg/kg of body weight) on the progression of ultrastructural and functional disorders in mitochondria and the heart's electrical activity in a rat model of myocardial injury induced with isoprenaline (ISO, 150 mg/kg/day for two consecutive days, ) was studied.
View Article and Find Full Text PDFThe effect of the modulators of the mitochondrial ATP-dependent potassium channel (mitoK) on the structural and biochemical alterations in the substantia nigra and brain tissues was studied in a rat model of Parkinson's disease induced by rotenone. It was found that, in experimental parkinsonism accompanied by characteristic motor deficits, both neurons and the myelin sheath of nerve fibers in the substantia nigra were affected. Changes in energy and ion exchange in brain mitochondria were also revealed.
View Article and Find Full Text PDFInt J Mol Sci
December 2023
The pyrimidine nucleoside uridine and its phosphorylated derivates have been shown to be involved in the systemic regulation of energy and redox balance and promote the regeneration of many tissues, including the myocardium, although the underlying mechanisms are not fully understood. Moreover, rearrangements in mitochondrial structure and function within cardiomyocytes are the predominant signs of myocardial injury. Accordingly, this study aimed to investigate whether uridine could alleviate acute myocardial injury induced by isoprenaline (ISO) exposure, a rat model of stress-induced cardiomyopathy, and to elucidate the mechanisms of its action related to mitochondrial dysfunction.
View Article and Find Full Text PDFThe effect of uridine (30 mg/kg for 7 days; intraperitoneally) on the functions of liver mitochondria in rats with experimentally induced hyperthyroidism (HT) (200 µg/100 g for 7 days, intraperitoneally) is studied in this paper. An excess of thyroid hormones (THs) led to an intensification of energy metabolism, the development of oxidative stress, a significant increase in the biogenesis, and changes in the content of proteins responsible for the fusion and fission of mitochondria. The injection of uridine did not change the concentration of THs in the blood of hyperthyroid rats (HRs) but normalized their body weight.
View Article and Find Full Text PDFThe arterial myogenic response to intraluminal pressure elicits constriction to maintain tissue perfusion. Smooth muscle [Ca] is a key determinant of constriction, tied to L-type (Ca1.2) Ca channels.
View Article and Find Full Text PDF