Publications by authors named "G D Luker"

Synthetic cells offer a versatile platform for addressing biomedical and environmental challenges, due to their modular design and capability to mimic cellular processes such as biosensing, intercellular communication, and metabolism. Constructing synthetic cells capable of stimuli-responsive secretion is vital for applications in targeted drug delivery and biosensor development. Previous attempts at engineering secretion for synthetic cells have been confined to non-specific cargo release via membrane pores, limiting the spatiotemporal precision and specificity necessary for selective secretion.

View Article and Find Full Text PDF

Cell microencapsulation technologies allow non-autologous implantation of therapeutic cells for sustained drug delivery purposes. The perm-selective membrane of these systems provides resistance to rupture, stablishes the upper molecular weight limit in bidirectional diffusion of molecules, and affects biocompatibility. Thus, despite being a decisive factor to succeed in terms of biosafety and therapeutic efficacy, little progress has been made in its optimization so far.

View Article and Find Full Text PDF
Article Synopsis
  • - A new method for portable near-infrared (NIR) fluorescence microscopy is presented, designed to improve imaging of biological samples using the NIR-II window.
  • - The integration of a superconducting nanowire single-photon detector (SNSPD) enhances the detection efficiency of the fluorescent dye indocyanine green (ICG), allowing for better imaging quality.
  • - This technique yields high-resolution images and a better signal-to-noise ratio, which could significantly benefit future clinical studies in fluorescence microscopy.
View Article and Find Full Text PDF

Targeting signaling pathways that drive cancer cell migration or proliferation is a common therapeutic approach. A popular experimental technique, the scratch assay, measures the migration and proliferation-driven cell closure of a defect in a confluent cell monolayer. These assays do not measure dynamic effects.

View Article and Find Full Text PDF
Article Synopsis
  • Tissue chip and organs-on-chip technologies are becoming important in preclinical cancer research due to the high failure rates of new drugs in clinical trials.
  • A new 32-unit tissue chip designed to fit standard 96-well plates simplifies automation and uses 3D printing and gravity-driven flow for better functionality.
  • This tissue chip allows for the simultaneous analysis of drug efficacy and toxicity, focusing on liver and bone marrow interactions, thereby improving the selection of potential treatments in early drug discovery stages.
View Article and Find Full Text PDF