Publications by authors named "G D Di Nucci"

Background: 6-Nitrodopamine (6-ND) released from rat vas deferens acts an endogenous modulator of vas deferens contractility.

Objectives: To investigate whether rat isolated seminal vesicles (RISV) releases 6-ND, the mechanisms involved in the release, and the modulatory role of 6-ND on tissue contractility.

Methods: Rat seminal vesicles were removed and placed in Krebs-Henseleit's solution at 37°C for 30 min, and an aliquot was used to analyze the concentrations of 6-ND, dopamine, noradrenaline, and adrenaline by liquid chromatography with tandem mass spectrometry (LC-MS/MS).

View Article and Find Full Text PDF

6-Nitrodopamine (6-ND) is the predominant catecholamine released from isolated vascular tissues in both mammals and reptiles, with its release being significantly reduced by the NO synthesis inhibitor, N-nitro-L-arginine methyl ester (L-NAME). The vasorelaxation induced by 6-ND is unaffected by either L-NAME or the soluble guanylate cyclase (sGC) inhibitor, ODQ, indicating an alternative mechanism of action. The vasorelaxant effect appears to be mediated through selective antagonism of dopamine D receptors rather than traditional nitric oxide (NO)-mediated pathways.

View Article and Find Full Text PDF
Article Synopsis
  • - The study evaluated the safety and effectiveness of PuraStat, a topical hemostatic agent, for treating active gastrointestinal bleeding and preventing bleeding in patients undergoing endoscopic procedures.
  • - Data from 401 patients across ten Italian centers showed PuraStat achieved hemostasis in nearly all cases of active bleeding (98.9%) and had a low follow-up bleeding rate (3.9%) for preventive uses.
  • - No adverse events related to PuraStat were reported, indicating it is a safe option that could be used for broader applications than currently recommended.
View Article and Find Full Text PDF

A self-assemble amphiphilic diblock copolymer that can incorporate iron oxide nanocubes (IONCs) in chain-like assemblies as heat mediators for magnetic hyperthermia (MHT) and tuneable amounts of IR780 dye as agent for photothermal therapy (PTT) is developed. MHT-heating performance of photobeads in viscous media have the same heat performances in water at magnetic field conditions of clinical use. Thanks to IR780, the photobeads are activated by infrared laser light within the first biological window (808 nm) with a significant enhancement of photo-stability of IR780 enabling the raise of the temperature at therapeutic values during multiple PTT cycles and showing unchanged optical features up to 8 days.

View Article and Find Full Text PDF