Context: Adipose steroid metabolism modifies body fat development in polycystic ovary syndrome (PCOS).
Objective: To determine whether subcutaneous (SC) abdominal adipose aldo-keto reductase 1C3 (AKR1C3; a marker of testosterone generation) is increased in normal-weight women with PCOS vs age- and body mass index (BMI)-matched normoandrogenic ovulatory women (controls) and is related to SC abdominal adipose activator protein-1 (AP-1; a marker of adipocyte differentiation) and/or androgen receptor (AR) protein expression in predicting fat accretion.
Design: Prospective cohort study.
Polycystic ovary syndrome (PCOS) is a common endocrinopathy of reproductive-aged women, characterized by hyperandrogenism, oligo-anovulation and insulin resistance and closely linked with preferential abdominal fat accumulation. As an ancestral primate trait, PCOS was likely further selected in humans when scarcity of food in hunter-gatherers of the late Pleistocene additionally programmed for enhanced fat storage to meet the metabolic demands of reproduction in later life. As an evolutionary model for PCOS, healthy normal-weight women with hyperandrogenic PCOS have subcutaneous (SC) abdominal adipose stem cells that favor fat storage through exaggerated lipid accumulation during development to adipocytes in vitro.
View Article and Find Full Text PDFContext: Ovarian and adrenal steroidogenesis underlie endocrine-metabolic dysfunction in polycystic ovary syndrome (PCOS). Adipocytes express aldo-keto reductase 1C3 and type 1 11β-hydroxysteroid dehydrogenase, which modulate peripheral androgen and cortisol production.
Objectives: To compare serum adrenal steroids, including 11-oxygenated androgens (11-oxyandrogens), cortisol, and cortisone between normal-weight women with PCOS and body mass index- and age-matched ovulatory women with normal-androgenic profiles (controls), and assess whether adrenal steroids associate with abdominal adipose deposition.
Objective: To examine whether low-dose flutamide administration to normal-weight women with polycystic ovary syndrome (PCOS) reduces abdominal fat deposition, attenuates accelerated lipid accumulation in newly formed adipocytes derived from subcutaneous (SC) abdominal adipose stem cells (ASCs), and/or alters glucose-lipid metabolism.
Design: A double-blind, placebo-controlled randomized clinical trial.
Setting: An academic medical center.
As a common endocrinopathy of reproductive-aged women, polycystic ovary syndrome (PCOS) is characterized by hyperandrogenism, oligo-anovulation and polycystic ovarian morphology. It is linked with insulin resistance through preferential abdominal fat accumulation that is worsened by obesity. Over the past two millennia, menstrual irregularity, male-type habitus and sub-infertility have been described in women and confirm that these clinical features of PCOS were common in antiquity.
View Article and Find Full Text PDF