Publications by authors named "G D Buntin"

Transgenic corn (Zea mays L.) expressing insecticidal toxins from Bacillus thuringiensis (Bt) helps to control or suppress injury from a range of target insect pests. This study summarizes the yield benefits of Bt corn from field trials in Georgia, North Carolina, and South Carolina evaluating Bt and non-Bt corn hybrids from 2009 to 2023.

View Article and Find Full Text PDF

The corn earworm, (Boddie), causes persistent ear damage to corn grown in the southeastern United States region. Increased levels of ear damage have been associated with mycotoxin contamination in addition to yield loss. Corn hybrids expressing proteins from the (Bt) may provide corn earworm control.

View Article and Find Full Text PDF

Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) has evolved resistance to insecticidal toxins from Bacillus thuringiensis (Bt) Berliner (Bacillales: Bacillaceae) expressed in genetically engineered corn, Zea mays L. This study provides an overview of field trials from Georgia, North Carolina, and South Carolina evaluating Bt and non-Bt corn hybrids from 2009 to 2022 to show changes in susceptibility in H. zea to Bt corn.

View Article and Find Full Text PDF

The Hessian fly (HF) is an invasive insect that has caused millions of dollars in yield losses to southeastern US wheat farms. Genetic resistance is the most sustainable solution to control HF. However, emerging biotypes are quickly overcoming resistance genes in the southeast; therefore, identifying novel sources of resistance is critical.

View Article and Find Full Text PDF

Background: Helicoverpa zea, an economic pest in the south-eastern United States, has evolved practical resistance to Bacillus thuringiensis (Bt) Cry toxins in maize and cotton. Insect resistance management (IRM) programs have historically required planting of structured non-Bt maize, but because of its low adoption, the use of seed blends has been considered. To generate knowledge on target pest biology and ecology to help improve IRM strategies, nine field trials were conducted in 2019 and 2020 in Florida, Georgia, North Carolina, and South Carolina to evaluate the impact of Bt (Cry1Ab + Cry1F or Cry1Ab + Cry1F + Vip3A) and non-Bt maize plants in blended and structured refuge treatments on H.

View Article and Find Full Text PDF