Simplified analogues of the potent human amylase inhibitor montbretin A were synthesised and shown to bind tightly, = 60 and 70 nM, with improved specificity over medically relevant glycosidases, making them promising candidates for controlling blood glucose. Crystallographic analysis confirmed similar binding modes and identified new active site interactions.
View Article and Find Full Text PDFHSP27 is highly expressed in, and supports oncogene addiction of, many cancers. HSP27 phosphorylation is a limiting step for activation of this protein and a target for inhibition, but its highly disordered structure challenges rational structure-guided drug discovery. We performed multistep biochemical, structural, and computational experiments to define a spherical 24-monomer complex composed of 12 HSP27 dimers with a phosphorylation pocket flanked by serine residues between their N-terminal domains.
View Article and Find Full Text PDFmacrocyclic peptides, derived using selection technologies such as phage and mRNA display, present unique and unexpected solutions to challenging biological problems. This is due in part to their unusual folds, which are able to present side chains in ways not available to canonical structures such as α-helices and β-sheets. Despite much recent interest in these molecules, their folding and binding behavior remains poorly characterized.
View Article and Find Full Text PDFHuman pancreatic α-amylase (HPA) is responsible for degrading starch to malto-oligosaccharides, thence to glucose, and is therefore an attractive therapeutic target for the treatment of diabetes and obesity. Here we report the discovery of a unique lariat nonapeptide, by means of the RaPID (Random non-standard Peptides Integrated Discovery) system, composed of five amino acids in a head-to-side-chain thioether macrocycle and a further four amino acids in a 3 helical C terminus. This is a potent inhibitor of HPA (K = 7 nM) yet exhibits selectivity for the target over other glycosidases tested.
View Article and Find Full Text PDFCathepsin K (CatK) is the predominant mammalian bone-degrading protease and thus an ideal target for antiosteoporotic drug development. Rodent models of osteoporosis are preferred due to their close reflection of the human disease and their ease of handling, genetic manipulation and economic affordability. However, large differences in the potency of CatK inhibitors for the mouse/rat vs.
View Article and Find Full Text PDF