Publications by authors named "G D Bhowmick"

Bioelectrochemical anaerobic ammonium oxidation (anammox) systems allow eco-friendly removal of nitrogen from reject wastewater coming from biogas processing as the anammox bacteria have previously shown to have c-type cytochromes acting in the extracellular electron transport (EET) mechanism between the bacteria and electrode. The anammoxosome compartment present in anammox bacteria features a highly curved membrane and contains tubular structures along with electron-dense particles that contain iron, which could enhance the process of EET and enhance nitrogen removal by properly applied potentials. In this study, nitrogen removal was investigated in the electrostimulated anammox nitrogen removal (EANR) cells operated comparatively at open circuit and at applied potentials of - 300 mV, - 500 mV, and - 700 mV vs.

View Article and Find Full Text PDF

Unlabelled: Seaweed, a valuable marine resource widely cultivated worldwide, can be vulnerable to stress and microbiome alterations, resulting in the decay of seaweeds and substantial economic losses. To investigate the seaweed-microbiome interaction, our study aimed to isolate marine bacteria and fungi that can cause Ice-Ice disease and evaluate their enzymatic characteristics for potential application in bioethanol production from seaweed biomass. Three red seaweed species (, , and ) were obtained for our study and placed in separate culture tanks.

View Article and Find Full Text PDF

Microalgal lipids contain a wide array of liposoluble bioactive compounds, but lipid extraction remains a critical limitation for their commercial use. An accelerated solvent extraction (ASE) was used to extract lipids from , (), and grown under either standard or nitrogen depletion conditions. Under standard growth conditions, ASE using methanol:chloroform (2:1), methyl -butyl ether (MTBE):methanol:water, and ethanol at 100 °C resulted in the highest recovery of total lipids (352 ± 30, 410 ± 32, and 127 ± 15 mg/g biomass from , , and , respectively).

View Article and Find Full Text PDF

The potential of seaweed to mitigate methane is real and studies with red seaweeds have found reductions in methane produced from ruminants fed red seaweeds in the region of 60-90% where the active compound responsible for this is bromoform. Other studies with brown and green seaweeds have observed reductions in methane production of between 20 and 45% in vitro and 10% in vivo. Benefits of feeding seaweeds to ruminants are seaweed specific and animal species-dependent.

View Article and Find Full Text PDF

Seaweed biomass is considered a valuable and potential, alternative protein source but it is currently under-exploited. Seaweed or Macroalgae do not require arable land and freshwater for their cultivation, they are fast growing and contain several health ingredients and beneficial macronutrients. In this study, we determined the in vitro k-Protein Digestibility-Corrected Amino Acid Score (k-PDCAAS) values of six different, Irish seaweeds using the rapid k-PDCAAS method.

View Article and Find Full Text PDF