At cryogenic temperatures, the photoluminescence spectrum of CdSe nanoplatelets (NPLs) usually consists of multiple emission lines, the origin of which is still under debate. While there seems to be consensus that both neutral excitons and trions contribute to the NPL emission, the prominent role of trions is rather puzzling. In this work, we demonstrate that Förster resonant energy transfer in stacks of NPLs combined with hole trap states in specific NPLs within the stack trigger trion formation, while single NPL spectra are dominated by neutral excitonic emission.
View Article and Find Full Text PDFLight-emitting diodes in the UV-C spectral range (UV-C LEDs) can potentially replace bulky and toxic mercury lamps in a wide range of applications including sterilization and water purification. Several obstacles still limit the efficiencies of UV-C LEDs. Devices in flip-chip geometry suffer from a huge difference in the work functions between the p-AlGaN and high-reflective Al mirrors, whereas the absence of UV-C transparent current spreading layers limits the development of UV-C LEDs in standard geometry.
View Article and Find Full Text PDFThe chemical synthesis of (CdSe)13 magic-sized clusters (MSCs) allows the replacement of host atoms by individual transition metals such as Mn. By analyzing the spectral fingerprints of the Mn2+ photoluminescence (PL) in MSCs with different dopant concentrations, we are able to distinguish between single Mn2+ ions and coupled Mn2+ pairs. In case of Mn2+ pair emission, temperature-dependent studies show a pronounced red shift, followed by a distinct blue shift of the PL energy upon heating.
View Article and Find Full Text PDFTransition metal dichalcogenide (TMDC) monolayers with their direct band gap in the visible to near-infrared spectral range have emerged over the past years as highly promising semiconducting materials for optoelectronic applications. Progress in scalable fabrication methods for TMDCs like metal-organic chemical vapor deposition (MOCVD) and the ambition to exploit specific material properties, such as mechanical flexibility or high transparency, highlight the importance of suitable device concepts and processing techniques. In this work, we make use of the high transparency of TMDC monolayers to fabricate transparent light-emitting devices (LEDs).
View Article and Find Full Text PDFStructural defects in transition metal dichalcogenide (TMDC) monolayers (ML) play a significant role in determining their (opto)electronic properties, triggering numerous efforts to control defect densities during material growth or by post-growth treatments. Various types of TMDC have been successfully deposited by MOCVD (metal-organic chemical vapor deposition), which is a wafer-scale deposition technique with excellent uniformity and controllability. However, so far there are no findings on the extent to which the incorporation of defects can be controlled by growth parameters during MOCVD processes of TMDC.
View Article and Find Full Text PDF