We present a fully automated centrifugal microfluidic method for particle based protein immunoassays. Stick-pack technology is employed for pre-storage and release of liquid reagents. Quantitative layout of centrifugo-pneumatic particle handling, including timed valving, switching and pumping is assisted by network simulations.
View Article and Find Full Text PDFWe present new unit operations for valving and switching in centrifugal microfluidics that are actuated by a temperature change rate (TCR) and controlled by the rotational frequency. Implementation is realized simply by introducing a comparatively large fluidic resistance to an air vent of a fluidic structure downstream of a siphon channel. During temperature decrease at a given TCR, the air pressure inside the downstream structure decreases and the fluidic resistance of the air vent slows down air pressure compensation allowing a thermally induced underpressure to build up temporarily.
View Article and Find Full Text PDFDiagnosis of infectious diseases suffers from long turnaround times for gold standard culture-based identification of bacterial pathogens, therefore impeding timely specific antimicrobial treatment based on laboratory evidence. Rapid molecular diagnostics-based technologies enable detection of microorganisms within hours however cumbersome workflows and complex equipment still prevent their widespread use in the routine clinical microbiology setting. We developed a centrifugal-microfluidic "LabDisk" system for rapid and highly-sensitive pathogen detection on a point-of-care analyser.
View Article and Find Full Text PDFMicrofluidic systems for polymerase chain reaction (PCR) should be fully closed to avoid vapor loss and to exclude the risk of contaminating the laboratory environment. In closed systems however, the high temperatures of up to 95 °C associated with PCR cause high overpressures up to 100 kPa, dominated by the increase of vapor partial pressure upon evaporation. Such high overpressures pose challenges to the mechanical stability of microfluidic chips as well as to the liquid handling in integrated sample-to-answer systems.
View Article and Find Full Text PDFThis article reveals a rapid sandwich enzyme-linked immunosorbent assay (ELISA) for the highly sensitive detection of human C-reactive protein (CRP) in less than 30 min. It employs a one-step kinetics-based highly simplified and cost-effective sandwich ELISA procedure with minimal process steps. The procedure involves the formation of a sandwich immune complex on capture anti-human CRP antibody-bound Dynabeads in 15 min, followed by two magnet-assisted washings and one enzymatic reaction.
View Article and Find Full Text PDF