Long interspersed element-1 (LINE-1) retrotransposons are abundant transposable elements in mammals and significantly influence chromosome structure, chromatin organization, and 3D genome architecture. In this issue of , Ataei et al. (doi:10.
View Article and Find Full Text PDFFrom April 20 to 23, 2024, three hundred ten researchers from around the world gathered in Saint-Malo, France, at the fourth International Congress on Transposable Elements (ICTE 2024), to present their most recent discoveries on transposable elements (TEs) and exchange ideas and methodologies. ICTE has been held every four years since 2008 (except in 2020, when it was exceptionally transformed into a seminar series due to the Covid-19 pandemic) and is organized by the French network on Mobile Genetic Elements (CNRS GDR 3546). This fourth edition offered two keynote presentations and four sessions presenting the latest findings and encouraging discussions on the following topics: (1) TEs, genome evolution and adaptation; (2) TEs in health and diseases; (3) TE control and epigenetics; (4) Transposition mechanisms and applications.
View Article and Find Full Text PDFBreast cancer is the most prevalent type of cancer in women worldwide. Within breast tumors, the basal-like subtype has the worst prognosis, prompting the need for new tools to understand, detect, and treat these tumors. Certain germline-restricted genes show aberrant expression in tumors and are known as Cancer/Testis genes; their misexpression has diagnostic and therapeutic applications.
View Article and Find Full Text PDFLong interspersed element 1 (L1) retrotransposons are implicated in human disease and evolution. Their global activity is repressed by DNA methylation, but deciphering the regulation of individual copies has been challenging. Here, we combine short- and long-read sequencing to unveil L1 methylation heterogeneity across cell types, families, and individual loci and elucidate key principles involved.
View Article and Find Full Text PDF