Publications by authors named "G Compagnini"

High-entropy alloys (HEAs) are a class of metal alloys consisting of four or more molar equal or near-equal elements. HEA nanomaterials have garnered significant interest due to their wide range of applications, such as electrocatalysis, welding, and brazing. Their unique multi-principle high-entropy effect allows for the tailoring of the alloy composition to facilitate specific electrochemical reactions.

View Article and Find Full Text PDF

The synthesis of contaminant-free silver@linear carbon chains (Ag@LCCs) nanohybrid systems, at different Ag/LCCs ratios, by pulsed laser ablation was studied. The ablation products were first characterized by several diagnostic techniques: conventional UV-Vis optical absorption and micro-Raman spectroscopies, as well as scanning electron microscopy, operating in transmission mode. The experimental evidence was confirmed by the theoretical simulations' data.

View Article and Find Full Text PDF

In a single crystalline Si particle, we observed a huge amplification of the Raman peak at 521 cm. With an AFM microscope, coupled with a Micro-Raman spectrometer, we investigate a single Si particle at wavelengths of 532 nm, 633 nm, and 785 nm. As observed by transmission electron microscopy, it has an octahedral shape of 150 nm in size.

View Article and Find Full Text PDF

Gold nanoparticles (Au NPs) have received great attention owing to their biocompatible nature, environmental, and widespread biomedical applications. Au NPs are known as capable to regulate inflammatory responses in several tissues and organs; interestingly, lower toxicity in conjunction with anti-inflammatory effects was reported to occur with Au NPs treatment. Several variables drive this benefit-risk balance, including Au NPs physicochemical properties such as their morphology, surface chemistry, and charge.

View Article and Find Full Text PDF