Publications by authors named "G Ciampaglia"

Newsfeed algorithms frequently amplify misinformation and other low-quality content. How can social media platforms more effectively promote reliable information? Existing approaches are difficult to scale and vulnerable to manipulation. In this paper, we propose using the political diversity of a website's audience as a quality signal.

View Article and Find Full Text PDF

Representation learning on networks offers a powerful alternative to the oft painstaking process of manual feature engineering, and, as a result, has enjoyed considerable success in recent years. However, all the existing representation learning methods are based on the first-order network, that is, the network that only captures the pairwise interactions between the nodes. As a result, these methods may fail to incorporate non-Markovian higher order dependencies in the network.

View Article and Find Full Text PDF

As social media replace traditional communication channels, we are often exposed to too much information to process. The presence of too many participants, for example, can turn online public spaces into noisy, overcrowded fora where no meaningful conversation can be held. Here, we analyse a large dataset of public chat logs from Twitch, a popular video-streaming platform, in order to examine how information overload affects online group communication.

View Article and Find Full Text PDF

The massive spread of digital misinformation has been identified as a major threat to democracies. Communication, cognitive, social, and computer scientists are studying the complex causes for the viral diffusion of misinformation, while online platforms are beginning to deploy countermeasures. Little systematic, data-based evidence has been published to guide these efforts.

View Article and Find Full Text PDF

Algorithms that favor popular items are used to help us select among many choices, from top-ranked search engine results to highly-cited scientific papers. The goal of these algorithms is to identify high-quality items such as reliable news, credible information sources, and important discoveries-in short, high-quality content should rank at the top. Prior work has shown that choosing what is popular may amplify random fluctuations and lead to sub-optimal rankings.

View Article and Find Full Text PDF