Publications by authors named "G Chitarin"

In the ITER neutral beam injectors (NBI), the presence of an external variable magnetic field generated by the ITER tokamak itself, could deflect the ion beam during acceleration and cause a loss of beam focusing. For this reason, the ion source, the accelerator and the neutralizer will be shielded from external magnetic field by means of a passive magnetic shield and a system of active correction and compensation coils (ACCC). The ACCC will operate in a feedback control loop and thus require the measurement of magnetic field inside the NBI vessel.

View Article and Find Full Text PDF

The requirements of ITER neutral beam injectors (1 MeV, 40 A negative deuterium ion current for 1 h) have never been simultaneously attained; therefore, a dedicated Neutral Beam Test Facility (NBTF) was set up at Consorzio RFX (Padova, Italy). The NBTF includes two experiments: SPIDER (Source for the Production of Ions of Deuterium Extracted from Rf plasma), the full-scale prototype of the source of ITER injectors, with a 100 keV accelerator, to investigate and optimize the properties of the ion source; and MITICA, the full-scale prototype of the entire injector, devoted to the issues related to the accelerator, including voltage holding at low gas pressure. The present paper gives an account of the status of the procurements, of the timeline, and of the voltage holding tests and experiments for MITICA.

View Article and Find Full Text PDF

In view of the realization of the negative ion beam injectors for ITER, a test facility, named SPIDER, is under construction in Padova (Italy) to study and optimize production and extraction of negative ions. The present paper is devoted to the analysis of the expected first operations of SPIDER in terms of single-beamlet and multiple-beamlet simulations of the hydrogen beam optics in various operational conditions. The effectiveness of the methods adopted to compensate for the magnetic deflection of the particles is also assessed.

View Article and Find Full Text PDF

A scheme of a neutral beam injector (NBI), based on electrostatic acceleration and magneto-static deflection of negative ions, is proposed and analyzed in terms of feasibility and performance. The scheme is based on the deflection of a high energy (2 MeV) and high current (some tens of amperes) negative ion beam by a large magnetic deflector placed between the Beam Source (BS) and the neutralizer. This scheme has the potential of solving two key issues, which at present limit the applicability of a NBI to a fusion reactor: the maximum achievable acceleration voltage and the direct exposure of the BS to the flux of neutrons and radiation coming from the fusion reactor.

View Article and Find Full Text PDF

The negative-ion accelerator for the MITICA neutral beam injector has been designed and optimized in order to reduce the thermo-mechanical stresses in all components below limits compatible with the required fatigue life. However, deviation from the expected beam performances can be caused by "off-normal" operating conditions of the accelerator. The purpose of the present work is to identify and analyse all the "off-normal" operating conditions, which could possibly become critical in terms of thermo-mechanical stresses or of degradation of the optical performances of the beam.

View Article and Find Full Text PDF