The design of dualsteric/bitopic receptor ligands as compounds capable of simultaneously interacting with both the orthosteric and an allosteric binding site has gained importance to achieve enhanced receptor specificity and minimize off-target effects. In this work, we reported the synthesis and biological evaluation of a new series of compounds, namely, the series, obtained by chemically combining the CB1R ago-positive allosteric modulators (PAM) with the cannabinoid receptors (CBRs) orthosteric agonist . Therefore, compounds were designed as dualsteric/bitopic ligands for CB1R with the aim of obtaining stronger CB1R agonists or ago-PAMs, with improved receptor subtype selectivity and reduction of central side effects.
View Article and Find Full Text PDFThis review explores the dual role of skeletal muscle as both a mechanical and endocrine organ, highlighting its contributions to overall health and its adaptability to various inputs such as nutrition, hormones, exercise, and injuries. In addition to its role in metabolism and energy conversion, skeletal muscle secretes signalling molecules called myokines (at rest) and exerkines (during/after physical exercise), which communicate with other organs like the brain, the cardiovascular system, and the immune system. Key molecules such as interleukins, irisin, and myostatin are discussed for their roles in mediating muscle health and inter-organ communication.
View Article and Find Full Text PDFMulti-drug resistance (MDR) is a serious challenge in contemporary clinical practice and is mostly responsible for the failure of cancer medication therapies. Several experimental evidence links MDR to the overexpression of the drug efflux transporter P-gp, therefore, the discovery of novel P-glycoprotein inhibitors is required to treat or prevent MDR and to improve the absorption of chemotherapy drugs via the gastrointestinal system. In this work, we explored a series of novel pyridoquinoxaline-based derivatives designed from parental compounds, previously proved active in enhancing anticancer drugs in MDR nasopharyngeal carcinoma (KB).
View Article and Find Full Text PDFNeurodegenerative diseases (NDDs) are progressive multifactorial disorders of the nervous system sharing common pathogenic features, including intracellular misfolded protein aggregation, mitochondrial deficit, and inflammation. Taking into consideration the multifaceted nature of NDDs, development of multitarget-directed ligands (MTDLs) has evolved as an attractive therapeutic strategy. Compounds that target the cannabinoid receptor type II (CB2R) are rapidly emerging as novel effective MTDLs against common NDDs, such as Alzheimer's disease (AD).
View Article and Find Full Text PDF