The reuse of industrial waste, such as electric arc furnace dust (EAFD) as reinforcement in aluminum matrix composites (AMC), is still little explored even though it has shown potential to improve the mechanical properties, such as hardness and mechanical strength, of AMCs. To propose a new alternative for EAFD recycling, AA7075-EAFD composites were produced by spark plasma sintering (SPS). The starting powders were prepared by high-energy milling with different weight fractions of EAFD in two particle size ranges added to an AA7075 matrix.
View Article and Find Full Text PDFThe design of complex engineering structures largely relies on computational intelligence in the form of science-based predictive models to support design decisions. This approach requires modeling and manufacturing uncertainties to be accounted for explicitly and leads to an inescapable trade-off of performance for robustness. To remedy this situation, a novel self-design paradigm is proposed that closes the loop between the design and manufacturing processes by leveraging physical intelligence in the form of real-time experimental observations.
View Article and Find Full Text PDFThis data article comprises experimental data to investigate the nonlinear dynamic behavior of the Orion beam structure, which consists of two duraluminum beams assembled by bolted joints. To retain contact on a small area between both beams, this new lap-joint configuration proposes contact patches at each bolt connection. The Orion beam suggests an assembly configuration that associates bolts dedicated to 'static' functions and to those to perform 'damping' functions.
View Article and Find Full Text PDFNanostructured β-FeSi and β-FeCoSi specimens with a relative density of up to 95% were synthesized by combining a top-down approach and spark plasma sintering. The thermoelectric properties of a 50 nm crystallite size β-FeSi sample were compared to those of an annealed one, and for the former a strong decrease in lattice thermal conductivity and an upshift of the maximum Seebeck's coefficient were shown, resulting in an improvement of the figure of merit by a factor of 1.7 at 670 K.
View Article and Find Full Text PDFAA7075 aluminum alloy is widely used for several high-technology applications for its high mechanical strength to weight ratio but is still the subject of several studies seeking a further increase in its mechanical properties. A commercial powder is used, either as-received or after ball-milling. Dense AA7075 samples are prepared in one step by Spark Plasma Sintering, at 550 °C with a holding time of 15 min and a uniaxial pressure of 100 MPa.
View Article and Find Full Text PDF