Natamycin is commonly used to control fungal growth on agar media used for bacterial enumeration or strain isolation. However, there is no conclusive report on the possible effect of this antibiotic on bacterial growth or on the diversity of the recovered soil bacteria. Therefore, the possible effects of natamycin on the numbers of bacteria isolated at 12 degrees C from three different soils and soybean rhizosphere soil were investigated using natamycin concentrations ranging from 0 to 200 mg l(-1).
View Article and Find Full Text PDFThe impact of organic amendment (sewage sludge or waste water) used to fertilize agricultural soils was estimated on the atrazine-degrading activity, the atrazine-degrading genetic potential and the bacterial community structure of soils continuously cropped with corn. Long-term application of organic amendment did not modify atrazine-mineralizing activity, which was found to essentially depend on the soil type. It also did not modify atrazine-degrading genetic potential estimated by quantitative PCR targeting atzA, B and C genes, which was shown to depend on soil type.
View Article and Find Full Text PDFNitrate reduction is performed by phylogenetically diverse bacteria. Analysis of narG (alpha subunit of the membrane bound nitrate reductase) trees constructed using environmental sequences revealed a new cluster that is not related to narG gene from known nitrate-reducing bacteria. In this study, primers targeting this as yet uncultivated nitrate-reducing group were designed and used to develop a real-time SYBR(R) Green PCR assay.
View Article and Find Full Text PDFWe report the development of quantitative competitive (QC) PCR assays for quantifying the 16S, 18S ribosomal and atzC genes in nucleic acids directly extracted from soil. QC-PCR assays were standardised, calibrated and evaluated with an experimental study aiming to evaluate the impact of atrazine application on soil microflora. Comparison of QC-PCR 16S and 18S results with those of soil microbial biomass showed that, following atrazine application, the microbial biomass was not affected and that the amount of 16S rDNA gene representing 'bacteria' increased transitorily, while the amount of 18S rDNA gene representing fungi decreased in soil.
View Article and Find Full Text PDFFour insecticides, carbofuran, chlormephos, terbufos and benfuracarb, currently used on maize (Zea mays) at sowing, were tested for their compatibility with Azospirillum lipoferum strain CRT1 used as an inoculant to improve maize growth and yield. The growth or survival of A lipoferum was studied in the presence of the insecticides: (1) in liquid and solid cultures of the bacteria, (2) when a commercial inoculant (Azogreen-m, Liphatech, Meyzieu, France) was inoculated directly on insecticide granules, (3) when inoculated Azogreen-m granules were mixed with insecticide granules and (4) when inoculated Azogreen-m granules were delivered separately to the seed bed. Of the four insecticides tested, only terbufos had a slight effect on growth of A lipoferum in solid cultures.
View Article and Find Full Text PDF