Measuring temperature in complex two-phase flows is crucial for understanding the dynamics of heat and mass transfer. In this Letter, we introduce a novel, to the best of our knowledge, optical approach based on the combination of two-photon laser-induced fluorescence (2p-LIF) imaging and two-color laser-induced fluorescence (2CLIF) for instantaneous temperature mapping of complex liquid media. Using Kiton Red (KR) and Rhodamine 560 (R560), a temperature sensitivity of 1.
View Article and Find Full Text PDFUnderstandings heat transfer across a solid/liquid interface is crucial for establishing novel thermal control pathways in a range of energy applications. One of the major problems raised in this context is the impact of the three-phase contact line between solid, liquid, and gas on heat flux perturbations at the nanoscale. The focus of this research is the thermal transport nanosized meniscus restricted between two solid walls.
View Article and Find Full Text PDFTo control the evolution of a pandemic such as COVID-19, knowing the conditions under which the pathogen is being transmitted represents a critical issue, especially when implementing protection strategies such as social distancing and wearing face masks. For viruses and bacteria that spread via airborne and/or droplet pathways, this requires understanding how saliva droplets evolve over time after their expulsion by speaking or coughing. Within this context, the transition from saliva droplets to solid residues, due to water evaporation, is studied here both experimentally, considering the saliva from 5 men and 5 women, and via numerical modeling to accurately predict the dynamics of this process.
View Article and Find Full Text PDFWe present an efficient technique for the evaluation of the Gibbs adsorption of a liquid on a solid substrate. The behavior of a water nanodroplet on a silicon surface is simulated with molecular dynamics. An external field with varying strength is applied on the system to tune the solid-liquid interfacial contact area.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
July 2011
The question of whether liquid atomization depends on instability dynamics (through refinements of Rayleigh-Plateau, Rayleigh-Taylor, or Kelvin-Helmholtz mechanisms) or on turbulent cascades, as suggested by Richardson and Kolmogorov, is still open. In this paper, experimental results reveal that both mechanisms are needed to explain the probability density functions (PDFs) of the droplets in a spray obtained from an industrial fan spray nozzle. Instability of Rayleigh-Taylor type controls the size of the largest droplets while the smallest droplets follow a PDF given by a turbulent cascading mechanism characterized by a log-Lévy stable law that has a stability parameter equal to 1.
View Article and Find Full Text PDF