Ocular artifacts, including blinks and saccades, pose significant challenges in the analysis of electroencephalographic (EEG) data, often obscuring crucial neural signals. This tutorial provides a comprehensive guide to the most effective methods for correcting these artifacts, with a focus on algorithms designed for both laboratory and real-world settings. We review traditional approaches, such as regression-based techniques and Independent Component Analysis (ICA), alongside more advanced methods like Artifact Subspace Reconstruction (ASR) and deep learning-based algorithms.
View Article and Find Full Text PDFBackground/objectives: Given the importance of emotion recognition for communication purposes, and the impairment for such skill in CI users despite impressive language performances, the aim of the present study was to investigate the neural correlates of emotion recognition skills, apart from language, in adult unilateral CI (UCI) users during a music in noise (happy/sad) recognition task. Furthermore, asymmetry was investigated through electroencephalographic (EEG) rhythm, given the traditional concept of hemispheric lateralization for emotional processing, and the intrinsic asymmetry due to the clinical UCI condition.
Methods: Twenty adult UCI users and eight normal hearing (NH) controls were recruited.
Cochlear implants (CI) allow deaf patients to improve language perception and improving their emotional valence assessment. Electroencephalographic (EEG) measures were employed so far to improve CI programming reliability and to evaluate listening effort in auditory tasks, which are particularly useful in conditions when subjective evaluations are scarcely appliable or reliable. Unfortunately, the presence of CI on the scalp introduces an electrical artifact coupled to EEG signals that masks physiological features recorded by electrodes close to the site of implant.
View Article and Find Full Text PDFBackground: Despite substantial progress in investigating its psychophysical complexity, tinnitus remains a scientific and clinical enigma. The present study, through an ecological and multidisciplinary approach, aims to identify associations between electroencephalographic (EEG) and psycho-audiological variables.
Methods: EEG beta activity, often related to stress and anxiety, was acquired from 12 tinnitus patients (TIN group) and 7 controls (CONT group) during an audio cognitive task and at rest.
Despite the proven effectiveness of cochlear implant (CI) in the hearing restoration of deaf or hard-of-hearing (DHH) children, to date, extreme variability in verbal working memory (VWM) abilities is observed in both unilateral and bilateral CI user children (CIs). Although clinical experience has long observed deficits in this fundamental executive function in CIs, the cause to date is still unknown. Here, we have set out to investigate differences in brain functioning regarding the impact of monaural and binaural listening in CIs compared with normal hearing (NH) peers during a three-level difficulty n-back task undertaken in two sensory modalities (auditory and visual).
View Article and Find Full Text PDF