Spin waves represent the collective excitations of the magnetization field within a magnetic material, providing dispersion curves that can be manipulated by material design and external stimuli. Bulk and surface spin waves can be excited in a thin film with positive or negative group velocities and, by incorporating a symmetry-breaking mechanism, magnetochiral features arise. Here we study the band diagram of a chiral magnonic crystal consisting of a ferromagnetic film incorporating a periodic Dzyaloshinskii-Moriya coupling via interfacial contact with an array of heavy-metal nanowires.
View Article and Find Full Text PDFMicromachines (Basel)
November 2022
We show that magnetic skyrmions can be stabilised at room temperature in continuous [Ir/Co/Pt] multilayers on SiO/Si substrates without the prior application of electric current or magnetic field. While decreasing the Co thickness, a transition of the magnetic domain patterns from worm-like state to separated stripes is observed. The skyrmions are clearly imaged in both states using magnetic force microscopy.
View Article and Find Full Text PDFReconfigurable magnetization textures offer control of spin waves with promising properties for future low-power beyond-CMOS systems. However, materials with perpendicular magnetic anisotropy (PMA) suitable for stable magnetization-texture formation are characterized by high damping, which limits their applicability in magnonic devices. Here, we propose to overcome this limitation by using hybrid structures, i.
View Article and Find Full Text PDFThe development of skyrmionic devices requires a suitable tuning of material parameters to stabilize skyrmions and control their density. It has been demonstrated recently that different skyrmion types can be simultaneously stabilized at room temperature in heterostructures involving ferromagnets, ferrimagnets, and heavy metals, offering a new platform of coding binary information in the type of skyrmion instead of the presence/absence of skyrmions. Here, we tune the energy landscape of the two skyrmion types in such heterostructures by engineering the geometrical and material parameters of the individual layers.
View Article and Find Full Text PDFWe show a method to control magnetic interfacial effects in multilayers with Dzyaloshinskii-Moriya interaction (DMI) using helium (He[Formula: see text]) ion irradiation. We report results from SQUID magnetometry, ferromagnetic resonance as well as Brillouin light scattering results on multilayers with DMI as a function of irradiation fluence to study the effect of irradiation on the magnetic properties of the multilayers. Our results show clear evidence of the He[Formula: see text] irradiation effects on the magnetic properties which is consistent with interface modification due to the effects of the He[Formula: see text] irradiation.
View Article and Find Full Text PDF