Publications by authors named "G Carbonell"

Purpose: To evaluate the value of pre-treatment MRI-based radiomics in patients with hepatocellular carcinoma (HCC) for the prediction of response to Yttrium 90 radiation segmentectomy.

Methods: This retrospective study included 154 patients (38 female; mean age 66.8 years) who underwent contrast-enhanced MRI prior to radiation segmentectomy.

View Article and Find Full Text PDF

Purpose: To assess the role of pretreatment multiparametric (mp)MRI-based radiomic features in predicting pathologic complete response (pCR) of locally advanced rectal cancer (LARC) to neoadjuvant chemoradiation therapy (nCRT).

Methods: This was a retrospective dual-center study including 98 patients (M/F 77/21, mean age 60 years) with LARC who underwent pretreatment mpMRI followed by nCRT and total mesorectal excision or watch and wait. Fifty-eight patients from institution 1 constituted the training set and 40 from institution 2 the validation set.

View Article and Find Full Text PDF

Objective: To assess the performance of convolutional neural networks (CNNs) for semiautomated segmentation of hepatocellular carcinoma (HCC) tumors on MRI.

Methods: This retrospective single-center study included 292 patients (237 M/55F, mean age 61 years) with pathologically confirmed HCC between 08/2015 and 06/2019 and who underwent MRI before surgery. The dataset was randomly divided into training (n = 195), validation (n = 66), and test sets (n = 31).

View Article and Find Full Text PDF
Article Synopsis
  • The study looked at new ways to diagnose a liver condition called clinically significant portal hypertension by measuring different factors in patients' livers and spleens.
  • They used various medical imaging techniques and compared the results to traditional methods.
  • The results showed that some measurements, like liver T-HBP and ΔT, were good indicators for diagnosing this condition.
View Article and Find Full Text PDF

Despite extraordinary international efforts to dampen the spread and understand the mechanisms behind SARS-CoV-2 infections, accessible predictive biomarkers directly applicable in the clinic are yet to be discovered. Recent studies have revealed that diverse types of assays bear limited predictive power for COVID-19 outcomes. Here, we harness the predictive power of chest computed tomography (CT) in combination with plasma cytokines using a machine learning and k-fold cross-validation approach for predicting death during hospitalization and maximum severity degree in COVID-19 patients.

View Article and Find Full Text PDF