Publications by authors named "G Cantele"

The employment of multi-species starter cultures has growing importance in modern winemaking for improving the complexity and wine attributes. The assessment of compatibility for selected species/strains at the industrial-scale is crucial to assure the quality and the safety associated with fermentations. An aspect particularly relevant when the species belong to non-Saccharomyces, Saccharomyces spp.

View Article and Find Full Text PDF

We show that the central finite difference formula for the first and the second derivative of a function can be derived, in the context of quantum mechanics, as matrix elements of the momentum and kinetic energy operators on discrete coordinate eigenkets |xn〉 defined on a uniform grid. Starting from the discretization of integrals involving canonical commutations, simple closed-form expressions of the matrix elements are obtained. A detailed analysis of the convergence toward the continuum limit with respect to both the grid spacing and the derivative approximation order is presented.

View Article and Find Full Text PDF

First principles calculations were performed to study the interface electronic structure and the Schottky barrier heights (SBHs) of ZnO-metal interfaces. Different kinds of metals were considered with different chemistries on the polar (0 0 0 1) and (0 0 0 1¯) ZnO surfaces. The projection of the density of states on the atomic orbitals of the interface atoms reveals that two kinds of interface electronic states appear: states due to the chemical bonding which appear at well defined energies and conventional metal-induced gap states associated with a smooth density of states in the bulk ZnO band gap region.

View Article and Find Full Text PDF

The scope of this Minireview is to provide an overview of the recent progress on carbon nanotube electrodes applied to organic thin film transistors. After an introduction on the general aspects of the charge injection processes at various electrode-semiconductor interfaces, we discuss the great potential of carbon nanotube electrodes for organic thin film transistors and the recent achievements in the field.

View Article and Find Full Text PDF

We address the structural and electronic properties of graphene nanoribbons (GNRs) covalently immobilized on a metallic substrate by means of an organic layer. The GNR-organic layer and organic layer-metal interfaces can be thought of as constituents of a nanodevice and have been accurately studied using large-scale density functional theory calculations. Our results demonstrate the possibility of combining nanopatterned metal-organic layer substrates with selected GNRs to obtain well ordered and stable structures while preserving the GNR energy band gap, an essential requirement for any switching nanodevice.

View Article and Find Full Text PDF